66
|
1 // Copyright 2009 The Go Authors. All rights reserved.
|
|
2 // Use of this source code is governed by a BSD-style
|
|
3 // license that can be found in the LICENSE file.
|
|
4
|
|
5 // Linux system calls.
|
|
6 // This file is compiled as ordinary Go code,
|
|
7 // but it is also input to mksyscall,
|
|
8 // which parses the //sys lines and generates system call stubs.
|
|
9 // Note that sometimes we use a lowercase //sys name and
|
|
10 // wrap it in our own nicer implementation.
|
|
11
|
|
12 package unix
|
|
13
|
|
14 import (
|
|
15 "encoding/binary"
|
|
16 "syscall"
|
|
17 "time"
|
|
18 "unsafe"
|
|
19 )
|
|
20
|
|
21 /*
|
|
22 * Wrapped
|
|
23 */
|
|
24
|
|
25 func Access(path string, mode uint32) (err error) {
|
|
26 return Faccessat(AT_FDCWD, path, mode, 0)
|
|
27 }
|
|
28
|
|
29 func Chmod(path string, mode uint32) (err error) {
|
|
30 return Fchmodat(AT_FDCWD, path, mode, 0)
|
|
31 }
|
|
32
|
|
33 func Chown(path string, uid int, gid int) (err error) {
|
|
34 return Fchownat(AT_FDCWD, path, uid, gid, 0)
|
|
35 }
|
|
36
|
|
37 func Creat(path string, mode uint32) (fd int, err error) {
|
|
38 return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
|
|
39 }
|
|
40
|
|
41 func EpollCreate(size int) (fd int, err error) {
|
|
42 if size <= 0 {
|
|
43 return -1, EINVAL
|
|
44 }
|
|
45 return EpollCreate1(0)
|
|
46 }
|
|
47
|
|
48 //sys FanotifyInit(flags uint, event_f_flags uint) (fd int, err error)
|
|
49 //sys fanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname *byte) (err error)
|
|
50
|
|
51 func FanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname string) (err error) {
|
|
52 if pathname == "" {
|
|
53 return fanotifyMark(fd, flags, mask, dirFd, nil)
|
|
54 }
|
|
55 p, err := BytePtrFromString(pathname)
|
|
56 if err != nil {
|
|
57 return err
|
|
58 }
|
|
59 return fanotifyMark(fd, flags, mask, dirFd, p)
|
|
60 }
|
|
61
|
|
62 //sys fchmodat(dirfd int, path string, mode uint32) (err error)
|
|
63
|
|
64 func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
|
|
65 // Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
|
|
66 // and check the flags. Otherwise the mode would be applied to the symlink
|
|
67 // destination which is not what the user expects.
|
|
68 if flags&^AT_SYMLINK_NOFOLLOW != 0 {
|
|
69 return EINVAL
|
|
70 } else if flags&AT_SYMLINK_NOFOLLOW != 0 {
|
|
71 return EOPNOTSUPP
|
|
72 }
|
|
73 return fchmodat(dirfd, path, mode)
|
|
74 }
|
|
75
|
|
76 func InotifyInit() (fd int, err error) {
|
|
77 return InotifyInit1(0)
|
|
78 }
|
|
79
|
|
80 //sys ioctl(fd int, req uint, arg uintptr) (err error) = SYS_IOCTL
|
|
81 //sys ioctlPtr(fd int, req uint, arg unsafe.Pointer) (err error) = SYS_IOCTL
|
|
82
|
|
83 // ioctl itself should not be exposed directly, but additional get/set functions
|
|
84 // for specific types are permissible. These are defined in ioctl.go and
|
|
85 // ioctl_linux.go.
|
|
86 //
|
|
87 // The third argument to ioctl is often a pointer but sometimes an integer.
|
|
88 // Callers should use ioctlPtr when the third argument is a pointer and ioctl
|
|
89 // when the third argument is an integer.
|
|
90 //
|
|
91 // TODO: some existing code incorrectly uses ioctl when it should use ioctlPtr.
|
|
92
|
|
93 //sys Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
|
|
94
|
|
95 func Link(oldpath string, newpath string) (err error) {
|
|
96 return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
|
|
97 }
|
|
98
|
|
99 func Mkdir(path string, mode uint32) (err error) {
|
|
100 return Mkdirat(AT_FDCWD, path, mode)
|
|
101 }
|
|
102
|
|
103 func Mknod(path string, mode uint32, dev int) (err error) {
|
|
104 return Mknodat(AT_FDCWD, path, mode, dev)
|
|
105 }
|
|
106
|
|
107 func Open(path string, mode int, perm uint32) (fd int, err error) {
|
|
108 return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
|
|
109 }
|
|
110
|
|
111 //sys openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
|
|
112
|
|
113 func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
|
|
114 return openat(dirfd, path, flags|O_LARGEFILE, mode)
|
|
115 }
|
|
116
|
|
117 //sys openat2(dirfd int, path string, open_how *OpenHow, size int) (fd int, err error)
|
|
118
|
|
119 func Openat2(dirfd int, path string, how *OpenHow) (fd int, err error) {
|
|
120 return openat2(dirfd, path, how, SizeofOpenHow)
|
|
121 }
|
|
122
|
|
123 func Pipe(p []int) error {
|
|
124 return Pipe2(p, 0)
|
|
125 }
|
|
126
|
|
127 //sysnb pipe2(p *[2]_C_int, flags int) (err error)
|
|
128
|
|
129 func Pipe2(p []int, flags int) error {
|
|
130 if len(p) != 2 {
|
|
131 return EINVAL
|
|
132 }
|
|
133 var pp [2]_C_int
|
|
134 err := pipe2(&pp, flags)
|
|
135 if err == nil {
|
|
136 p[0] = int(pp[0])
|
|
137 p[1] = int(pp[1])
|
|
138 }
|
|
139 return err
|
|
140 }
|
|
141
|
|
142 //sys ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
|
|
143
|
|
144 func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
|
|
145 if len(fds) == 0 {
|
|
146 return ppoll(nil, 0, timeout, sigmask)
|
|
147 }
|
|
148 return ppoll(&fds[0], len(fds), timeout, sigmask)
|
|
149 }
|
|
150
|
|
151 func Poll(fds []PollFd, timeout int) (n int, err error) {
|
|
152 var ts *Timespec
|
|
153 if timeout >= 0 {
|
|
154 ts = new(Timespec)
|
|
155 *ts = NsecToTimespec(int64(timeout) * 1e6)
|
|
156 }
|
|
157 return Ppoll(fds, ts, nil)
|
|
158 }
|
|
159
|
|
160 //sys Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
|
|
161
|
|
162 func Readlink(path string, buf []byte) (n int, err error) {
|
|
163 return Readlinkat(AT_FDCWD, path, buf)
|
|
164 }
|
|
165
|
|
166 func Rename(oldpath string, newpath string) (err error) {
|
|
167 return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
|
|
168 }
|
|
169
|
|
170 func Rmdir(path string) error {
|
|
171 return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
|
|
172 }
|
|
173
|
|
174 //sys Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
|
|
175
|
|
176 func Symlink(oldpath string, newpath string) (err error) {
|
|
177 return Symlinkat(oldpath, AT_FDCWD, newpath)
|
|
178 }
|
|
179
|
|
180 func Unlink(path string) error {
|
|
181 return Unlinkat(AT_FDCWD, path, 0)
|
|
182 }
|
|
183
|
|
184 //sys Unlinkat(dirfd int, path string, flags int) (err error)
|
|
185
|
|
186 func Utimes(path string, tv []Timeval) error {
|
|
187 if tv == nil {
|
|
188 err := utimensat(AT_FDCWD, path, nil, 0)
|
|
189 if err != ENOSYS {
|
|
190 return err
|
|
191 }
|
|
192 return utimes(path, nil)
|
|
193 }
|
|
194 if len(tv) != 2 {
|
|
195 return EINVAL
|
|
196 }
|
|
197 var ts [2]Timespec
|
|
198 ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
|
|
199 ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
|
|
200 err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
|
|
201 if err != ENOSYS {
|
|
202 return err
|
|
203 }
|
|
204 return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
|
|
205 }
|
|
206
|
|
207 //sys utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
|
|
208
|
|
209 func UtimesNano(path string, ts []Timespec) error {
|
|
210 return UtimesNanoAt(AT_FDCWD, path, ts, 0)
|
|
211 }
|
|
212
|
|
213 func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
|
|
214 if ts == nil {
|
|
215 return utimensat(dirfd, path, nil, flags)
|
|
216 }
|
|
217 if len(ts) != 2 {
|
|
218 return EINVAL
|
|
219 }
|
|
220 return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
|
|
221 }
|
|
222
|
|
223 func Futimesat(dirfd int, path string, tv []Timeval) error {
|
|
224 if tv == nil {
|
|
225 return futimesat(dirfd, path, nil)
|
|
226 }
|
|
227 if len(tv) != 2 {
|
|
228 return EINVAL
|
|
229 }
|
|
230 return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
|
|
231 }
|
|
232
|
|
233 func Futimes(fd int, tv []Timeval) (err error) {
|
|
234 // Believe it or not, this is the best we can do on Linux
|
|
235 // (and is what glibc does).
|
|
236 return Utimes("/proc/self/fd/"+itoa(fd), tv)
|
|
237 }
|
|
238
|
|
239 const ImplementsGetwd = true
|
|
240
|
|
241 //sys Getcwd(buf []byte) (n int, err error)
|
|
242
|
|
243 func Getwd() (wd string, err error) {
|
|
244 var buf [PathMax]byte
|
|
245 n, err := Getcwd(buf[0:])
|
|
246 if err != nil {
|
|
247 return "", err
|
|
248 }
|
|
249 // Getcwd returns the number of bytes written to buf, including the NUL.
|
|
250 if n < 1 || n > len(buf) || buf[n-1] != 0 {
|
|
251 return "", EINVAL
|
|
252 }
|
|
253 // In some cases, Linux can return a path that starts with the
|
|
254 // "(unreachable)" prefix, which can potentially be a valid relative
|
|
255 // path. To work around that, return ENOENT if path is not absolute.
|
|
256 if buf[0] != '/' {
|
|
257 return "", ENOENT
|
|
258 }
|
|
259
|
|
260 return string(buf[0 : n-1]), nil
|
|
261 }
|
|
262
|
|
263 func Getgroups() (gids []int, err error) {
|
|
264 n, err := getgroups(0, nil)
|
|
265 if err != nil {
|
|
266 return nil, err
|
|
267 }
|
|
268 if n == 0 {
|
|
269 return nil, nil
|
|
270 }
|
|
271
|
|
272 // Sanity check group count. Max is 1<<16 on Linux.
|
|
273 if n < 0 || n > 1<<20 {
|
|
274 return nil, EINVAL
|
|
275 }
|
|
276
|
|
277 a := make([]_Gid_t, n)
|
|
278 n, err = getgroups(n, &a[0])
|
|
279 if err != nil {
|
|
280 return nil, err
|
|
281 }
|
|
282 gids = make([]int, n)
|
|
283 for i, v := range a[0:n] {
|
|
284 gids[i] = int(v)
|
|
285 }
|
|
286 return
|
|
287 }
|
|
288
|
|
289 func Setgroups(gids []int) (err error) {
|
|
290 if len(gids) == 0 {
|
|
291 return setgroups(0, nil)
|
|
292 }
|
|
293
|
|
294 a := make([]_Gid_t, len(gids))
|
|
295 for i, v := range gids {
|
|
296 a[i] = _Gid_t(v)
|
|
297 }
|
|
298 return setgroups(len(a), &a[0])
|
|
299 }
|
|
300
|
|
301 type WaitStatus uint32
|
|
302
|
|
303 // Wait status is 7 bits at bottom, either 0 (exited),
|
|
304 // 0x7F (stopped), or a signal number that caused an exit.
|
|
305 // The 0x80 bit is whether there was a core dump.
|
|
306 // An extra number (exit code, signal causing a stop)
|
|
307 // is in the high bits. At least that's the idea.
|
|
308 // There are various irregularities. For example, the
|
|
309 // "continued" status is 0xFFFF, distinguishing itself
|
|
310 // from stopped via the core dump bit.
|
|
311
|
|
312 const (
|
|
313 mask = 0x7F
|
|
314 core = 0x80
|
|
315 exited = 0x00
|
|
316 stopped = 0x7F
|
|
317 shift = 8
|
|
318 )
|
|
319
|
|
320 func (w WaitStatus) Exited() bool { return w&mask == exited }
|
|
321
|
|
322 func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
|
|
323
|
|
324 func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
|
|
325
|
|
326 func (w WaitStatus) Continued() bool { return w == 0xFFFF }
|
|
327
|
|
328 func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
|
|
329
|
|
330 func (w WaitStatus) ExitStatus() int {
|
|
331 if !w.Exited() {
|
|
332 return -1
|
|
333 }
|
|
334 return int(w>>shift) & 0xFF
|
|
335 }
|
|
336
|
|
337 func (w WaitStatus) Signal() syscall.Signal {
|
|
338 if !w.Signaled() {
|
|
339 return -1
|
|
340 }
|
|
341 return syscall.Signal(w & mask)
|
|
342 }
|
|
343
|
|
344 func (w WaitStatus) StopSignal() syscall.Signal {
|
|
345 if !w.Stopped() {
|
|
346 return -1
|
|
347 }
|
|
348 return syscall.Signal(w>>shift) & 0xFF
|
|
349 }
|
|
350
|
|
351 func (w WaitStatus) TrapCause() int {
|
|
352 if w.StopSignal() != SIGTRAP {
|
|
353 return -1
|
|
354 }
|
|
355 return int(w>>shift) >> 8
|
|
356 }
|
|
357
|
|
358 //sys wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
|
|
359
|
|
360 func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
|
|
361 var status _C_int
|
|
362 wpid, err = wait4(pid, &status, options, rusage)
|
|
363 if wstatus != nil {
|
|
364 *wstatus = WaitStatus(status)
|
|
365 }
|
|
366 return
|
|
367 }
|
|
368
|
|
369 //sys Waitid(idType int, id int, info *Siginfo, options int, rusage *Rusage) (err error)
|
|
370
|
|
371 func Mkfifo(path string, mode uint32) error {
|
|
372 return Mknod(path, mode|S_IFIFO, 0)
|
|
373 }
|
|
374
|
|
375 func Mkfifoat(dirfd int, path string, mode uint32) error {
|
|
376 return Mknodat(dirfd, path, mode|S_IFIFO, 0)
|
|
377 }
|
|
378
|
|
379 func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
|
|
380 if sa.Port < 0 || sa.Port > 0xFFFF {
|
|
381 return nil, 0, EINVAL
|
|
382 }
|
|
383 sa.raw.Family = AF_INET
|
|
384 p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
|
|
385 p[0] = byte(sa.Port >> 8)
|
|
386 p[1] = byte(sa.Port)
|
|
387 sa.raw.Addr = sa.Addr
|
|
388 return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
|
|
389 }
|
|
390
|
|
391 func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
|
|
392 if sa.Port < 0 || sa.Port > 0xFFFF {
|
|
393 return nil, 0, EINVAL
|
|
394 }
|
|
395 sa.raw.Family = AF_INET6
|
|
396 p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
|
|
397 p[0] = byte(sa.Port >> 8)
|
|
398 p[1] = byte(sa.Port)
|
|
399 sa.raw.Scope_id = sa.ZoneId
|
|
400 sa.raw.Addr = sa.Addr
|
|
401 return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
|
|
402 }
|
|
403
|
|
404 func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
|
|
405 name := sa.Name
|
|
406 n := len(name)
|
|
407 if n >= len(sa.raw.Path) {
|
|
408 return nil, 0, EINVAL
|
|
409 }
|
|
410 sa.raw.Family = AF_UNIX
|
|
411 for i := 0; i < n; i++ {
|
|
412 sa.raw.Path[i] = int8(name[i])
|
|
413 }
|
|
414 // length is family (uint16), name, NUL.
|
|
415 sl := _Socklen(2)
|
|
416 if n > 0 {
|
|
417 sl += _Socklen(n) + 1
|
|
418 }
|
|
419 if sa.raw.Path[0] == '@' {
|
|
420 sa.raw.Path[0] = 0
|
|
421 // Don't count trailing NUL for abstract address.
|
|
422 sl--
|
|
423 }
|
|
424
|
|
425 return unsafe.Pointer(&sa.raw), sl, nil
|
|
426 }
|
|
427
|
|
428 // SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
|
|
429 type SockaddrLinklayer struct {
|
|
430 Protocol uint16
|
|
431 Ifindex int
|
|
432 Hatype uint16
|
|
433 Pkttype uint8
|
|
434 Halen uint8
|
|
435 Addr [8]byte
|
|
436 raw RawSockaddrLinklayer
|
|
437 }
|
|
438
|
|
439 func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
|
|
440 if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
|
|
441 return nil, 0, EINVAL
|
|
442 }
|
|
443 sa.raw.Family = AF_PACKET
|
|
444 sa.raw.Protocol = sa.Protocol
|
|
445 sa.raw.Ifindex = int32(sa.Ifindex)
|
|
446 sa.raw.Hatype = sa.Hatype
|
|
447 sa.raw.Pkttype = sa.Pkttype
|
|
448 sa.raw.Halen = sa.Halen
|
|
449 sa.raw.Addr = sa.Addr
|
|
450 return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
|
|
451 }
|
|
452
|
|
453 // SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
|
|
454 type SockaddrNetlink struct {
|
|
455 Family uint16
|
|
456 Pad uint16
|
|
457 Pid uint32
|
|
458 Groups uint32
|
|
459 raw RawSockaddrNetlink
|
|
460 }
|
|
461
|
|
462 func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
|
|
463 sa.raw.Family = AF_NETLINK
|
|
464 sa.raw.Pad = sa.Pad
|
|
465 sa.raw.Pid = sa.Pid
|
|
466 sa.raw.Groups = sa.Groups
|
|
467 return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
|
|
468 }
|
|
469
|
|
470 // SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
|
|
471 // using the HCI protocol.
|
|
472 type SockaddrHCI struct {
|
|
473 Dev uint16
|
|
474 Channel uint16
|
|
475 raw RawSockaddrHCI
|
|
476 }
|
|
477
|
|
478 func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
|
|
479 sa.raw.Family = AF_BLUETOOTH
|
|
480 sa.raw.Dev = sa.Dev
|
|
481 sa.raw.Channel = sa.Channel
|
|
482 return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
|
|
483 }
|
|
484
|
|
485 // SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
|
|
486 // using the L2CAP protocol.
|
|
487 type SockaddrL2 struct {
|
|
488 PSM uint16
|
|
489 CID uint16
|
|
490 Addr [6]uint8
|
|
491 AddrType uint8
|
|
492 raw RawSockaddrL2
|
|
493 }
|
|
494
|
|
495 func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
|
|
496 sa.raw.Family = AF_BLUETOOTH
|
|
497 psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
|
|
498 psm[0] = byte(sa.PSM)
|
|
499 psm[1] = byte(sa.PSM >> 8)
|
|
500 for i := 0; i < len(sa.Addr); i++ {
|
|
501 sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
|
|
502 }
|
|
503 cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
|
|
504 cid[0] = byte(sa.CID)
|
|
505 cid[1] = byte(sa.CID >> 8)
|
|
506 sa.raw.Bdaddr_type = sa.AddrType
|
|
507 return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
|
|
508 }
|
|
509
|
|
510 // SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
|
|
511 // using the RFCOMM protocol.
|
|
512 //
|
|
513 // Server example:
|
|
514 //
|
|
515 // fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
|
|
516 // _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
|
|
517 // Channel: 1,
|
|
518 // Addr: [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
|
|
519 // })
|
|
520 // _ = Listen(fd, 1)
|
|
521 // nfd, sa, _ := Accept(fd)
|
|
522 // fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
|
|
523 // Read(nfd, buf)
|
|
524 //
|
|
525 // Client example:
|
|
526 //
|
|
527 // fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
|
|
528 // _ = Connect(fd, &SockaddrRFCOMM{
|
|
529 // Channel: 1,
|
|
530 // Addr: [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
|
|
531 // })
|
|
532 // Write(fd, []byte(`hello`))
|
|
533 type SockaddrRFCOMM struct {
|
|
534 // Addr represents a bluetooth address, byte ordering is little-endian.
|
|
535 Addr [6]uint8
|
|
536
|
|
537 // Channel is a designated bluetooth channel, only 1-30 are available for use.
|
|
538 // Since Linux 2.6.7 and further zero value is the first available channel.
|
|
539 Channel uint8
|
|
540
|
|
541 raw RawSockaddrRFCOMM
|
|
542 }
|
|
543
|
|
544 func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) {
|
|
545 sa.raw.Family = AF_BLUETOOTH
|
|
546 sa.raw.Channel = sa.Channel
|
|
547 sa.raw.Bdaddr = sa.Addr
|
|
548 return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil
|
|
549 }
|
|
550
|
|
551 // SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
|
|
552 // The RxID and TxID fields are used for transport protocol addressing in
|
|
553 // (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
|
|
554 // zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
|
|
555 //
|
|
556 // The SockaddrCAN struct must be bound to the socket file descriptor
|
|
557 // using Bind before the CAN socket can be used.
|
|
558 //
|
|
559 // // Read one raw CAN frame
|
|
560 // fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
|
|
561 // addr := &SockaddrCAN{Ifindex: index}
|
|
562 // Bind(fd, addr)
|
|
563 // frame := make([]byte, 16)
|
|
564 // Read(fd, frame)
|
|
565 //
|
|
566 // The full SocketCAN documentation can be found in the linux kernel
|
|
567 // archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
|
|
568 type SockaddrCAN struct {
|
|
569 Ifindex int
|
|
570 RxID uint32
|
|
571 TxID uint32
|
|
572 raw RawSockaddrCAN
|
|
573 }
|
|
574
|
|
575 func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
|
|
576 if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
|
|
577 return nil, 0, EINVAL
|
|
578 }
|
|
579 sa.raw.Family = AF_CAN
|
|
580 sa.raw.Ifindex = int32(sa.Ifindex)
|
|
581 rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
|
|
582 for i := 0; i < 4; i++ {
|
|
583 sa.raw.Addr[i] = rx[i]
|
|
584 }
|
|
585 tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
|
|
586 for i := 0; i < 4; i++ {
|
|
587 sa.raw.Addr[i+4] = tx[i]
|
|
588 }
|
|
589 return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
|
|
590 }
|
|
591
|
|
592 // SockaddrCANJ1939 implements the Sockaddr interface for AF_CAN using J1939
|
|
593 // protocol (https://en.wikipedia.org/wiki/SAE_J1939). For more information
|
|
594 // on the purposes of the fields, check the official linux kernel documentation
|
|
595 // available here: https://www.kernel.org/doc/Documentation/networking/j1939.rst
|
|
596 type SockaddrCANJ1939 struct {
|
|
597 Ifindex int
|
|
598 Name uint64
|
|
599 PGN uint32
|
|
600 Addr uint8
|
|
601 raw RawSockaddrCAN
|
|
602 }
|
|
603
|
|
604 func (sa *SockaddrCANJ1939) sockaddr() (unsafe.Pointer, _Socklen, error) {
|
|
605 if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
|
|
606 return nil, 0, EINVAL
|
|
607 }
|
|
608 sa.raw.Family = AF_CAN
|
|
609 sa.raw.Ifindex = int32(sa.Ifindex)
|
|
610 n := (*[8]byte)(unsafe.Pointer(&sa.Name))
|
|
611 for i := 0; i < 8; i++ {
|
|
612 sa.raw.Addr[i] = n[i]
|
|
613 }
|
|
614 p := (*[4]byte)(unsafe.Pointer(&sa.PGN))
|
|
615 for i := 0; i < 4; i++ {
|
|
616 sa.raw.Addr[i+8] = p[i]
|
|
617 }
|
|
618 sa.raw.Addr[12] = sa.Addr
|
|
619 return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
|
|
620 }
|
|
621
|
|
622 // SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
|
|
623 // SockaddrALG enables userspace access to the Linux kernel's cryptography
|
|
624 // subsystem. The Type and Name fields specify which type of hash or cipher
|
|
625 // should be used with a given socket.
|
|
626 //
|
|
627 // To create a file descriptor that provides access to a hash or cipher, both
|
|
628 // Bind and Accept must be used. Once the setup process is complete, input
|
|
629 // data can be written to the socket, processed by the kernel, and then read
|
|
630 // back as hash output or ciphertext.
|
|
631 //
|
|
632 // Here is an example of using an AF_ALG socket with SHA1 hashing.
|
|
633 // The initial socket setup process is as follows:
|
|
634 //
|
|
635 // // Open a socket to perform SHA1 hashing.
|
|
636 // fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
|
|
637 // addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
|
|
638 // unix.Bind(fd, addr)
|
|
639 // // Note: unix.Accept does not work at this time; must invoke accept()
|
|
640 // // manually using unix.Syscall.
|
|
641 // hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
|
|
642 //
|
|
643 // Once a file descriptor has been returned from Accept, it may be used to
|
|
644 // perform SHA1 hashing. The descriptor is not safe for concurrent use, but
|
|
645 // may be re-used repeatedly with subsequent Write and Read operations.
|
|
646 //
|
|
647 // When hashing a small byte slice or string, a single Write and Read may
|
|
648 // be used:
|
|
649 //
|
|
650 // // Assume hashfd is already configured using the setup process.
|
|
651 // hash := os.NewFile(hashfd, "sha1")
|
|
652 // // Hash an input string and read the results. Each Write discards
|
|
653 // // previous hash state. Read always reads the current state.
|
|
654 // b := make([]byte, 20)
|
|
655 // for i := 0; i < 2; i++ {
|
|
656 // io.WriteString(hash, "Hello, world.")
|
|
657 // hash.Read(b)
|
|
658 // fmt.Println(hex.EncodeToString(b))
|
|
659 // }
|
|
660 // // Output:
|
|
661 // // 2ae01472317d1935a84797ec1983ae243fc6aa28
|
|
662 // // 2ae01472317d1935a84797ec1983ae243fc6aa28
|
|
663 //
|
|
664 // For hashing larger byte slices, or byte streams such as those read from
|
|
665 // a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
|
|
666 // the hash digest instead of creating a new one for a given chunk and finalizing it.
|
|
667 //
|
|
668 // // Assume hashfd and addr are already configured using the setup process.
|
|
669 // hash := os.NewFile(hashfd, "sha1")
|
|
670 // // Hash the contents of a file.
|
|
671 // f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
|
|
672 // b := make([]byte, 4096)
|
|
673 // for {
|
|
674 // n, err := f.Read(b)
|
|
675 // if err == io.EOF {
|
|
676 // break
|
|
677 // }
|
|
678 // unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
|
|
679 // }
|
|
680 // hash.Read(b)
|
|
681 // fmt.Println(hex.EncodeToString(b))
|
|
682 // // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
|
|
683 //
|
|
684 // For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
|
|
685 type SockaddrALG struct {
|
|
686 Type string
|
|
687 Name string
|
|
688 Feature uint32
|
|
689 Mask uint32
|
|
690 raw RawSockaddrALG
|
|
691 }
|
|
692
|
|
693 func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
|
|
694 // Leave room for NUL byte terminator.
|
|
695 if len(sa.Type) > 13 {
|
|
696 return nil, 0, EINVAL
|
|
697 }
|
|
698 if len(sa.Name) > 63 {
|
|
699 return nil, 0, EINVAL
|
|
700 }
|
|
701
|
|
702 sa.raw.Family = AF_ALG
|
|
703 sa.raw.Feat = sa.Feature
|
|
704 sa.raw.Mask = sa.Mask
|
|
705
|
|
706 typ, err := ByteSliceFromString(sa.Type)
|
|
707 if err != nil {
|
|
708 return nil, 0, err
|
|
709 }
|
|
710 name, err := ByteSliceFromString(sa.Name)
|
|
711 if err != nil {
|
|
712 return nil, 0, err
|
|
713 }
|
|
714
|
|
715 copy(sa.raw.Type[:], typ)
|
|
716 copy(sa.raw.Name[:], name)
|
|
717
|
|
718 return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
|
|
719 }
|
|
720
|
|
721 // SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
|
|
722 // SockaddrVM provides access to Linux VM sockets: a mechanism that enables
|
|
723 // bidirectional communication between a hypervisor and its guest virtual
|
|
724 // machines.
|
|
725 type SockaddrVM struct {
|
|
726 // CID and Port specify a context ID and port address for a VM socket.
|
|
727 // Guests have a unique CID, and hosts may have a well-known CID of:
|
|
728 // - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
|
|
729 // - VMADDR_CID_LOCAL: refers to local communication (loopback).
|
|
730 // - VMADDR_CID_HOST: refers to other processes on the host.
|
|
731 CID uint32
|
|
732 Port uint32
|
|
733 Flags uint8
|
|
734 raw RawSockaddrVM
|
|
735 }
|
|
736
|
|
737 func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
|
|
738 sa.raw.Family = AF_VSOCK
|
|
739 sa.raw.Port = sa.Port
|
|
740 sa.raw.Cid = sa.CID
|
|
741 sa.raw.Flags = sa.Flags
|
|
742
|
|
743 return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
|
|
744 }
|
|
745
|
|
746 type SockaddrXDP struct {
|
|
747 Flags uint16
|
|
748 Ifindex uint32
|
|
749 QueueID uint32
|
|
750 SharedUmemFD uint32
|
|
751 raw RawSockaddrXDP
|
|
752 }
|
|
753
|
|
754 func (sa *SockaddrXDP) sockaddr() (unsafe.Pointer, _Socklen, error) {
|
|
755 sa.raw.Family = AF_XDP
|
|
756 sa.raw.Flags = sa.Flags
|
|
757 sa.raw.Ifindex = sa.Ifindex
|
|
758 sa.raw.Queue_id = sa.QueueID
|
|
759 sa.raw.Shared_umem_fd = sa.SharedUmemFD
|
|
760
|
|
761 return unsafe.Pointer(&sa.raw), SizeofSockaddrXDP, nil
|
|
762 }
|
|
763
|
|
764 // This constant mirrors the #define of PX_PROTO_OE in
|
|
765 // linux/if_pppox.h. We're defining this by hand here instead of
|
|
766 // autogenerating through mkerrors.sh because including
|
|
767 // linux/if_pppox.h causes some declaration conflicts with other
|
|
768 // includes (linux/if_pppox.h includes linux/in.h, which conflicts
|
|
769 // with netinet/in.h). Given that we only need a single zero constant
|
|
770 // out of that file, it's cleaner to just define it by hand here.
|
|
771 const px_proto_oe = 0
|
|
772
|
|
773 type SockaddrPPPoE struct {
|
|
774 SID uint16
|
|
775 Remote []byte
|
|
776 Dev string
|
|
777 raw RawSockaddrPPPoX
|
|
778 }
|
|
779
|
|
780 func (sa *SockaddrPPPoE) sockaddr() (unsafe.Pointer, _Socklen, error) {
|
|
781 if len(sa.Remote) != 6 {
|
|
782 return nil, 0, EINVAL
|
|
783 }
|
|
784 if len(sa.Dev) > IFNAMSIZ-1 {
|
|
785 return nil, 0, EINVAL
|
|
786 }
|
|
787
|
|
788 *(*uint16)(unsafe.Pointer(&sa.raw[0])) = AF_PPPOX
|
|
789 // This next field is in host-endian byte order. We can't use the
|
|
790 // same unsafe pointer cast as above, because this value is not
|
|
791 // 32-bit aligned and some architectures don't allow unaligned
|
|
792 // access.
|
|
793 //
|
|
794 // However, the value of px_proto_oe is 0, so we can use
|
|
795 // encoding/binary helpers to write the bytes without worrying
|
|
796 // about the ordering.
|
|
797 binary.BigEndian.PutUint32(sa.raw[2:6], px_proto_oe)
|
|
798 // This field is deliberately big-endian, unlike the previous
|
|
799 // one. The kernel expects SID to be in network byte order.
|
|
800 binary.BigEndian.PutUint16(sa.raw[6:8], sa.SID)
|
|
801 copy(sa.raw[8:14], sa.Remote)
|
|
802 for i := 14; i < 14+IFNAMSIZ; i++ {
|
|
803 sa.raw[i] = 0
|
|
804 }
|
|
805 copy(sa.raw[14:], sa.Dev)
|
|
806 return unsafe.Pointer(&sa.raw), SizeofSockaddrPPPoX, nil
|
|
807 }
|
|
808
|
|
809 // SockaddrTIPC implements the Sockaddr interface for AF_TIPC type sockets.
|
|
810 // For more information on TIPC, see: http://tipc.sourceforge.net/.
|
|
811 type SockaddrTIPC struct {
|
|
812 // Scope is the publication scopes when binding service/service range.
|
|
813 // Should be set to TIPC_CLUSTER_SCOPE or TIPC_NODE_SCOPE.
|
|
814 Scope int
|
|
815
|
|
816 // Addr is the type of address used to manipulate a socket. Addr must be
|
|
817 // one of:
|
|
818 // - *TIPCSocketAddr: "id" variant in the C addr union
|
|
819 // - *TIPCServiceRange: "nameseq" variant in the C addr union
|
|
820 // - *TIPCServiceName: "name" variant in the C addr union
|
|
821 //
|
|
822 // If nil, EINVAL will be returned when the structure is used.
|
|
823 Addr TIPCAddr
|
|
824
|
|
825 raw RawSockaddrTIPC
|
|
826 }
|
|
827
|
|
828 // TIPCAddr is implemented by types that can be used as an address for
|
|
829 // SockaddrTIPC. It is only implemented by *TIPCSocketAddr, *TIPCServiceRange,
|
|
830 // and *TIPCServiceName.
|
|
831 type TIPCAddr interface {
|
|
832 tipcAddrtype() uint8
|
|
833 tipcAddr() [12]byte
|
|
834 }
|
|
835
|
|
836 func (sa *TIPCSocketAddr) tipcAddr() [12]byte {
|
|
837 var out [12]byte
|
|
838 copy(out[:], (*(*[unsafe.Sizeof(TIPCSocketAddr{})]byte)(unsafe.Pointer(sa)))[:])
|
|
839 return out
|
|
840 }
|
|
841
|
|
842 func (sa *TIPCSocketAddr) tipcAddrtype() uint8 { return TIPC_SOCKET_ADDR }
|
|
843
|
|
844 func (sa *TIPCServiceRange) tipcAddr() [12]byte {
|
|
845 var out [12]byte
|
|
846 copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceRange{})]byte)(unsafe.Pointer(sa)))[:])
|
|
847 return out
|
|
848 }
|
|
849
|
|
850 func (sa *TIPCServiceRange) tipcAddrtype() uint8 { return TIPC_SERVICE_RANGE }
|
|
851
|
|
852 func (sa *TIPCServiceName) tipcAddr() [12]byte {
|
|
853 var out [12]byte
|
|
854 copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceName{})]byte)(unsafe.Pointer(sa)))[:])
|
|
855 return out
|
|
856 }
|
|
857
|
|
858 func (sa *TIPCServiceName) tipcAddrtype() uint8 { return TIPC_SERVICE_ADDR }
|
|
859
|
|
860 func (sa *SockaddrTIPC) sockaddr() (unsafe.Pointer, _Socklen, error) {
|
|
861 if sa.Addr == nil {
|
|
862 return nil, 0, EINVAL
|
|
863 }
|
|
864 sa.raw.Family = AF_TIPC
|
|
865 sa.raw.Scope = int8(sa.Scope)
|
|
866 sa.raw.Addrtype = sa.Addr.tipcAddrtype()
|
|
867 sa.raw.Addr = sa.Addr.tipcAddr()
|
|
868 return unsafe.Pointer(&sa.raw), SizeofSockaddrTIPC, nil
|
|
869 }
|
|
870
|
|
871 // SockaddrL2TPIP implements the Sockaddr interface for IPPROTO_L2TP/AF_INET sockets.
|
|
872 type SockaddrL2TPIP struct {
|
|
873 Addr [4]byte
|
|
874 ConnId uint32
|
|
875 raw RawSockaddrL2TPIP
|
|
876 }
|
|
877
|
|
878 func (sa *SockaddrL2TPIP) sockaddr() (unsafe.Pointer, _Socklen, error) {
|
|
879 sa.raw.Family = AF_INET
|
|
880 sa.raw.Conn_id = sa.ConnId
|
|
881 sa.raw.Addr = sa.Addr
|
|
882 return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP, nil
|
|
883 }
|
|
884
|
|
885 // SockaddrL2TPIP6 implements the Sockaddr interface for IPPROTO_L2TP/AF_INET6 sockets.
|
|
886 type SockaddrL2TPIP6 struct {
|
|
887 Addr [16]byte
|
|
888 ZoneId uint32
|
|
889 ConnId uint32
|
|
890 raw RawSockaddrL2TPIP6
|
|
891 }
|
|
892
|
|
893 func (sa *SockaddrL2TPIP6) sockaddr() (unsafe.Pointer, _Socklen, error) {
|
|
894 sa.raw.Family = AF_INET6
|
|
895 sa.raw.Conn_id = sa.ConnId
|
|
896 sa.raw.Scope_id = sa.ZoneId
|
|
897 sa.raw.Addr = sa.Addr
|
|
898 return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP6, nil
|
|
899 }
|
|
900
|
|
901 // SockaddrIUCV implements the Sockaddr interface for AF_IUCV sockets.
|
|
902 type SockaddrIUCV struct {
|
|
903 UserID string
|
|
904 Name string
|
|
905 raw RawSockaddrIUCV
|
|
906 }
|
|
907
|
|
908 func (sa *SockaddrIUCV) sockaddr() (unsafe.Pointer, _Socklen, error) {
|
|
909 sa.raw.Family = AF_IUCV
|
|
910 // These are EBCDIC encoded by the kernel, but we still need to pad them
|
|
911 // with blanks. Initializing with blanks allows the caller to feed in either
|
|
912 // a padded or an unpadded string.
|
|
913 for i := 0; i < 8; i++ {
|
|
914 sa.raw.Nodeid[i] = ' '
|
|
915 sa.raw.User_id[i] = ' '
|
|
916 sa.raw.Name[i] = ' '
|
|
917 }
|
|
918 if len(sa.UserID) > 8 || len(sa.Name) > 8 {
|
|
919 return nil, 0, EINVAL
|
|
920 }
|
|
921 for i, b := range []byte(sa.UserID[:]) {
|
|
922 sa.raw.User_id[i] = int8(b)
|
|
923 }
|
|
924 for i, b := range []byte(sa.Name[:]) {
|
|
925 sa.raw.Name[i] = int8(b)
|
|
926 }
|
|
927 return unsafe.Pointer(&sa.raw), SizeofSockaddrIUCV, nil
|
|
928 }
|
|
929
|
|
930 type SockaddrNFC struct {
|
|
931 DeviceIdx uint32
|
|
932 TargetIdx uint32
|
|
933 NFCProtocol uint32
|
|
934 raw RawSockaddrNFC
|
|
935 }
|
|
936
|
|
937 func (sa *SockaddrNFC) sockaddr() (unsafe.Pointer, _Socklen, error) {
|
|
938 sa.raw.Sa_family = AF_NFC
|
|
939 sa.raw.Dev_idx = sa.DeviceIdx
|
|
940 sa.raw.Target_idx = sa.TargetIdx
|
|
941 sa.raw.Nfc_protocol = sa.NFCProtocol
|
|
942 return unsafe.Pointer(&sa.raw), SizeofSockaddrNFC, nil
|
|
943 }
|
|
944
|
|
945 type SockaddrNFCLLCP struct {
|
|
946 DeviceIdx uint32
|
|
947 TargetIdx uint32
|
|
948 NFCProtocol uint32
|
|
949 DestinationSAP uint8
|
|
950 SourceSAP uint8
|
|
951 ServiceName string
|
|
952 raw RawSockaddrNFCLLCP
|
|
953 }
|
|
954
|
|
955 func (sa *SockaddrNFCLLCP) sockaddr() (unsafe.Pointer, _Socklen, error) {
|
|
956 sa.raw.Sa_family = AF_NFC
|
|
957 sa.raw.Dev_idx = sa.DeviceIdx
|
|
958 sa.raw.Target_idx = sa.TargetIdx
|
|
959 sa.raw.Nfc_protocol = sa.NFCProtocol
|
|
960 sa.raw.Dsap = sa.DestinationSAP
|
|
961 sa.raw.Ssap = sa.SourceSAP
|
|
962 if len(sa.ServiceName) > len(sa.raw.Service_name) {
|
|
963 return nil, 0, EINVAL
|
|
964 }
|
|
965 copy(sa.raw.Service_name[:], sa.ServiceName)
|
|
966 sa.raw.SetServiceNameLen(len(sa.ServiceName))
|
|
967 return unsafe.Pointer(&sa.raw), SizeofSockaddrNFCLLCP, nil
|
|
968 }
|
|
969
|
|
970 var socketProtocol = func(fd int) (int, error) {
|
|
971 return GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
|
|
972 }
|
|
973
|
|
974 func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
|
|
975 switch rsa.Addr.Family {
|
|
976 case AF_NETLINK:
|
|
977 pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
|
|
978 sa := new(SockaddrNetlink)
|
|
979 sa.Family = pp.Family
|
|
980 sa.Pad = pp.Pad
|
|
981 sa.Pid = pp.Pid
|
|
982 sa.Groups = pp.Groups
|
|
983 return sa, nil
|
|
984
|
|
985 case AF_PACKET:
|
|
986 pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
|
|
987 sa := new(SockaddrLinklayer)
|
|
988 sa.Protocol = pp.Protocol
|
|
989 sa.Ifindex = int(pp.Ifindex)
|
|
990 sa.Hatype = pp.Hatype
|
|
991 sa.Pkttype = pp.Pkttype
|
|
992 sa.Halen = pp.Halen
|
|
993 sa.Addr = pp.Addr
|
|
994 return sa, nil
|
|
995
|
|
996 case AF_UNIX:
|
|
997 pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
|
|
998 sa := new(SockaddrUnix)
|
|
999 if pp.Path[0] == 0 {
|
|
1000 // "Abstract" Unix domain socket.
|
|
1001 // Rewrite leading NUL as @ for textual display.
|
|
1002 // (This is the standard convention.)
|
|
1003 // Not friendly to overwrite in place,
|
|
1004 // but the callers below don't care.
|
|
1005 pp.Path[0] = '@'
|
|
1006 }
|
|
1007
|
|
1008 // Assume path ends at NUL.
|
|
1009 // This is not technically the Linux semantics for
|
|
1010 // abstract Unix domain sockets--they are supposed
|
|
1011 // to be uninterpreted fixed-size binary blobs--but
|
|
1012 // everyone uses this convention.
|
|
1013 n := 0
|
|
1014 for n < len(pp.Path) && pp.Path[n] != 0 {
|
|
1015 n++
|
|
1016 }
|
|
1017 bytes := (*[len(pp.Path)]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
|
|
1018 sa.Name = string(bytes)
|
|
1019 return sa, nil
|
|
1020
|
|
1021 case AF_INET:
|
|
1022 proto, err := socketProtocol(fd)
|
|
1023 if err != nil {
|
|
1024 return nil, err
|
|
1025 }
|
|
1026
|
|
1027 switch proto {
|
|
1028 case IPPROTO_L2TP:
|
|
1029 pp := (*RawSockaddrL2TPIP)(unsafe.Pointer(rsa))
|
|
1030 sa := new(SockaddrL2TPIP)
|
|
1031 sa.ConnId = pp.Conn_id
|
|
1032 sa.Addr = pp.Addr
|
|
1033 return sa, nil
|
|
1034 default:
|
|
1035 pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
|
|
1036 sa := new(SockaddrInet4)
|
|
1037 p := (*[2]byte)(unsafe.Pointer(&pp.Port))
|
|
1038 sa.Port = int(p[0])<<8 + int(p[1])
|
|
1039 sa.Addr = pp.Addr
|
|
1040 return sa, nil
|
|
1041 }
|
|
1042
|
|
1043 case AF_INET6:
|
|
1044 proto, err := socketProtocol(fd)
|
|
1045 if err != nil {
|
|
1046 return nil, err
|
|
1047 }
|
|
1048
|
|
1049 switch proto {
|
|
1050 case IPPROTO_L2TP:
|
|
1051 pp := (*RawSockaddrL2TPIP6)(unsafe.Pointer(rsa))
|
|
1052 sa := new(SockaddrL2TPIP6)
|
|
1053 sa.ConnId = pp.Conn_id
|
|
1054 sa.ZoneId = pp.Scope_id
|
|
1055 sa.Addr = pp.Addr
|
|
1056 return sa, nil
|
|
1057 default:
|
|
1058 pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
|
|
1059 sa := new(SockaddrInet6)
|
|
1060 p := (*[2]byte)(unsafe.Pointer(&pp.Port))
|
|
1061 sa.Port = int(p[0])<<8 + int(p[1])
|
|
1062 sa.ZoneId = pp.Scope_id
|
|
1063 sa.Addr = pp.Addr
|
|
1064 return sa, nil
|
|
1065 }
|
|
1066
|
|
1067 case AF_VSOCK:
|
|
1068 pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
|
|
1069 sa := &SockaddrVM{
|
|
1070 CID: pp.Cid,
|
|
1071 Port: pp.Port,
|
|
1072 Flags: pp.Flags,
|
|
1073 }
|
|
1074 return sa, nil
|
|
1075 case AF_BLUETOOTH:
|
|
1076 proto, err := socketProtocol(fd)
|
|
1077 if err != nil {
|
|
1078 return nil, err
|
|
1079 }
|
|
1080 // only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
|
|
1081 switch proto {
|
|
1082 case BTPROTO_L2CAP:
|
|
1083 pp := (*RawSockaddrL2)(unsafe.Pointer(rsa))
|
|
1084 sa := &SockaddrL2{
|
|
1085 PSM: pp.Psm,
|
|
1086 CID: pp.Cid,
|
|
1087 Addr: pp.Bdaddr,
|
|
1088 AddrType: pp.Bdaddr_type,
|
|
1089 }
|
|
1090 return sa, nil
|
|
1091 case BTPROTO_RFCOMM:
|
|
1092 pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa))
|
|
1093 sa := &SockaddrRFCOMM{
|
|
1094 Channel: pp.Channel,
|
|
1095 Addr: pp.Bdaddr,
|
|
1096 }
|
|
1097 return sa, nil
|
|
1098 }
|
|
1099 case AF_XDP:
|
|
1100 pp := (*RawSockaddrXDP)(unsafe.Pointer(rsa))
|
|
1101 sa := &SockaddrXDP{
|
|
1102 Flags: pp.Flags,
|
|
1103 Ifindex: pp.Ifindex,
|
|
1104 QueueID: pp.Queue_id,
|
|
1105 SharedUmemFD: pp.Shared_umem_fd,
|
|
1106 }
|
|
1107 return sa, nil
|
|
1108 case AF_PPPOX:
|
|
1109 pp := (*RawSockaddrPPPoX)(unsafe.Pointer(rsa))
|
|
1110 if binary.BigEndian.Uint32(pp[2:6]) != px_proto_oe {
|
|
1111 return nil, EINVAL
|
|
1112 }
|
|
1113 sa := &SockaddrPPPoE{
|
|
1114 SID: binary.BigEndian.Uint16(pp[6:8]),
|
|
1115 Remote: pp[8:14],
|
|
1116 }
|
|
1117 for i := 14; i < 14+IFNAMSIZ; i++ {
|
|
1118 if pp[i] == 0 {
|
|
1119 sa.Dev = string(pp[14:i])
|
|
1120 break
|
|
1121 }
|
|
1122 }
|
|
1123 return sa, nil
|
|
1124 case AF_TIPC:
|
|
1125 pp := (*RawSockaddrTIPC)(unsafe.Pointer(rsa))
|
|
1126
|
|
1127 sa := &SockaddrTIPC{
|
|
1128 Scope: int(pp.Scope),
|
|
1129 }
|
|
1130
|
|
1131 // Determine which union variant is present in pp.Addr by checking
|
|
1132 // pp.Addrtype.
|
|
1133 switch pp.Addrtype {
|
|
1134 case TIPC_SERVICE_RANGE:
|
|
1135 sa.Addr = (*TIPCServiceRange)(unsafe.Pointer(&pp.Addr))
|
|
1136 case TIPC_SERVICE_ADDR:
|
|
1137 sa.Addr = (*TIPCServiceName)(unsafe.Pointer(&pp.Addr))
|
|
1138 case TIPC_SOCKET_ADDR:
|
|
1139 sa.Addr = (*TIPCSocketAddr)(unsafe.Pointer(&pp.Addr))
|
|
1140 default:
|
|
1141 return nil, EINVAL
|
|
1142 }
|
|
1143
|
|
1144 return sa, nil
|
|
1145 case AF_IUCV:
|
|
1146 pp := (*RawSockaddrIUCV)(unsafe.Pointer(rsa))
|
|
1147
|
|
1148 var user [8]byte
|
|
1149 var name [8]byte
|
|
1150
|
|
1151 for i := 0; i < 8; i++ {
|
|
1152 user[i] = byte(pp.User_id[i])
|
|
1153 name[i] = byte(pp.Name[i])
|
|
1154 }
|
|
1155
|
|
1156 sa := &SockaddrIUCV{
|
|
1157 UserID: string(user[:]),
|
|
1158 Name: string(name[:]),
|
|
1159 }
|
|
1160 return sa, nil
|
|
1161
|
|
1162 case AF_CAN:
|
|
1163 proto, err := socketProtocol(fd)
|
|
1164 if err != nil {
|
|
1165 return nil, err
|
|
1166 }
|
|
1167
|
|
1168 pp := (*RawSockaddrCAN)(unsafe.Pointer(rsa))
|
|
1169
|
|
1170 switch proto {
|
|
1171 case CAN_J1939:
|
|
1172 sa := &SockaddrCANJ1939{
|
|
1173 Ifindex: int(pp.Ifindex),
|
|
1174 }
|
|
1175 name := (*[8]byte)(unsafe.Pointer(&sa.Name))
|
|
1176 for i := 0; i < 8; i++ {
|
|
1177 name[i] = pp.Addr[i]
|
|
1178 }
|
|
1179 pgn := (*[4]byte)(unsafe.Pointer(&sa.PGN))
|
|
1180 for i := 0; i < 4; i++ {
|
|
1181 pgn[i] = pp.Addr[i+8]
|
|
1182 }
|
|
1183 addr := (*[1]byte)(unsafe.Pointer(&sa.Addr))
|
|
1184 addr[0] = pp.Addr[12]
|
|
1185 return sa, nil
|
|
1186 default:
|
|
1187 sa := &SockaddrCAN{
|
|
1188 Ifindex: int(pp.Ifindex),
|
|
1189 }
|
|
1190 rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
|
|
1191 for i := 0; i < 4; i++ {
|
|
1192 rx[i] = pp.Addr[i]
|
|
1193 }
|
|
1194 tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
|
|
1195 for i := 0; i < 4; i++ {
|
|
1196 tx[i] = pp.Addr[i+4]
|
|
1197 }
|
|
1198 return sa, nil
|
|
1199 }
|
|
1200 case AF_NFC:
|
|
1201 proto, err := socketProtocol(fd)
|
|
1202 if err != nil {
|
|
1203 return nil, err
|
|
1204 }
|
|
1205 switch proto {
|
|
1206 case NFC_SOCKPROTO_RAW:
|
|
1207 pp := (*RawSockaddrNFC)(unsafe.Pointer(rsa))
|
|
1208 sa := &SockaddrNFC{
|
|
1209 DeviceIdx: pp.Dev_idx,
|
|
1210 TargetIdx: pp.Target_idx,
|
|
1211 NFCProtocol: pp.Nfc_protocol,
|
|
1212 }
|
|
1213 return sa, nil
|
|
1214 case NFC_SOCKPROTO_LLCP:
|
|
1215 pp := (*RawSockaddrNFCLLCP)(unsafe.Pointer(rsa))
|
|
1216 if uint64(pp.Service_name_len) > uint64(len(pp.Service_name)) {
|
|
1217 return nil, EINVAL
|
|
1218 }
|
|
1219 sa := &SockaddrNFCLLCP{
|
|
1220 DeviceIdx: pp.Dev_idx,
|
|
1221 TargetIdx: pp.Target_idx,
|
|
1222 NFCProtocol: pp.Nfc_protocol,
|
|
1223 DestinationSAP: pp.Dsap,
|
|
1224 SourceSAP: pp.Ssap,
|
|
1225 ServiceName: string(pp.Service_name[:pp.Service_name_len]),
|
|
1226 }
|
|
1227 return sa, nil
|
|
1228 default:
|
|
1229 return nil, EINVAL
|
|
1230 }
|
|
1231 }
|
|
1232 return nil, EAFNOSUPPORT
|
|
1233 }
|
|
1234
|
|
1235 func Accept(fd int) (nfd int, sa Sockaddr, err error) {
|
|
1236 var rsa RawSockaddrAny
|
|
1237 var len _Socklen = SizeofSockaddrAny
|
|
1238 nfd, err = accept4(fd, &rsa, &len, 0)
|
|
1239 if err != nil {
|
|
1240 return
|
|
1241 }
|
|
1242 sa, err = anyToSockaddr(fd, &rsa)
|
|
1243 if err != nil {
|
|
1244 Close(nfd)
|
|
1245 nfd = 0
|
|
1246 }
|
|
1247 return
|
|
1248 }
|
|
1249
|
|
1250 func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
|
|
1251 var rsa RawSockaddrAny
|
|
1252 var len _Socklen = SizeofSockaddrAny
|
|
1253 nfd, err = accept4(fd, &rsa, &len, flags)
|
|
1254 if err != nil {
|
|
1255 return
|
|
1256 }
|
|
1257 if len > SizeofSockaddrAny {
|
|
1258 panic("RawSockaddrAny too small")
|
|
1259 }
|
|
1260 sa, err = anyToSockaddr(fd, &rsa)
|
|
1261 if err != nil {
|
|
1262 Close(nfd)
|
|
1263 nfd = 0
|
|
1264 }
|
|
1265 return
|
|
1266 }
|
|
1267
|
|
1268 func Getsockname(fd int) (sa Sockaddr, err error) {
|
|
1269 var rsa RawSockaddrAny
|
|
1270 var len _Socklen = SizeofSockaddrAny
|
|
1271 if err = getsockname(fd, &rsa, &len); err != nil {
|
|
1272 return
|
|
1273 }
|
|
1274 return anyToSockaddr(fd, &rsa)
|
|
1275 }
|
|
1276
|
|
1277 func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
|
|
1278 var value IPMreqn
|
|
1279 vallen := _Socklen(SizeofIPMreqn)
|
|
1280 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
|
|
1281 return &value, err
|
|
1282 }
|
|
1283
|
|
1284 func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
|
|
1285 var value Ucred
|
|
1286 vallen := _Socklen(SizeofUcred)
|
|
1287 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
|
|
1288 return &value, err
|
|
1289 }
|
|
1290
|
|
1291 func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
|
|
1292 var value TCPInfo
|
|
1293 vallen := _Socklen(SizeofTCPInfo)
|
|
1294 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
|
|
1295 return &value, err
|
|
1296 }
|
|
1297
|
|
1298 // GetsockoptString returns the string value of the socket option opt for the
|
|
1299 // socket associated with fd at the given socket level.
|
|
1300 func GetsockoptString(fd, level, opt int) (string, error) {
|
|
1301 buf := make([]byte, 256)
|
|
1302 vallen := _Socklen(len(buf))
|
|
1303 err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
|
|
1304 if err != nil {
|
|
1305 if err == ERANGE {
|
|
1306 buf = make([]byte, vallen)
|
|
1307 err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
|
|
1308 }
|
|
1309 if err != nil {
|
|
1310 return "", err
|
|
1311 }
|
|
1312 }
|
|
1313 return string(buf[:vallen-1]), nil
|
|
1314 }
|
|
1315
|
|
1316 func GetsockoptTpacketStats(fd, level, opt int) (*TpacketStats, error) {
|
|
1317 var value TpacketStats
|
|
1318 vallen := _Socklen(SizeofTpacketStats)
|
|
1319 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
|
|
1320 return &value, err
|
|
1321 }
|
|
1322
|
|
1323 func GetsockoptTpacketStatsV3(fd, level, opt int) (*TpacketStatsV3, error) {
|
|
1324 var value TpacketStatsV3
|
|
1325 vallen := _Socklen(SizeofTpacketStatsV3)
|
|
1326 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
|
|
1327 return &value, err
|
|
1328 }
|
|
1329
|
|
1330 func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
|
|
1331 return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
|
|
1332 }
|
|
1333
|
|
1334 func SetsockoptPacketMreq(fd, level, opt int, mreq *PacketMreq) error {
|
|
1335 return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
|
|
1336 }
|
|
1337
|
|
1338 // SetsockoptSockFprog attaches a classic BPF or an extended BPF program to a
|
|
1339 // socket to filter incoming packets. See 'man 7 socket' for usage information.
|
|
1340 func SetsockoptSockFprog(fd, level, opt int, fprog *SockFprog) error {
|
|
1341 return setsockopt(fd, level, opt, unsafe.Pointer(fprog), unsafe.Sizeof(*fprog))
|
|
1342 }
|
|
1343
|
|
1344 func SetsockoptCanRawFilter(fd, level, opt int, filter []CanFilter) error {
|
|
1345 var p unsafe.Pointer
|
|
1346 if len(filter) > 0 {
|
|
1347 p = unsafe.Pointer(&filter[0])
|
|
1348 }
|
|
1349 return setsockopt(fd, level, opt, p, uintptr(len(filter)*SizeofCanFilter))
|
|
1350 }
|
|
1351
|
|
1352 func SetsockoptTpacketReq(fd, level, opt int, tp *TpacketReq) error {
|
|
1353 return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
|
|
1354 }
|
|
1355
|
|
1356 func SetsockoptTpacketReq3(fd, level, opt int, tp *TpacketReq3) error {
|
|
1357 return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
|
|
1358 }
|
|
1359
|
|
1360 func SetsockoptTCPRepairOpt(fd, level, opt int, o []TCPRepairOpt) (err error) {
|
|
1361 if len(o) == 0 {
|
|
1362 return EINVAL
|
|
1363 }
|
|
1364 return setsockopt(fd, level, opt, unsafe.Pointer(&o[0]), uintptr(SizeofTCPRepairOpt*len(o)))
|
|
1365 }
|
|
1366
|
|
1367 // Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
|
|
1368
|
|
1369 // KeyctlInt calls keyctl commands in which each argument is an int.
|
|
1370 // These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
|
|
1371 // KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
|
|
1372 // KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
|
|
1373 // KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
|
|
1374 //sys KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
|
|
1375
|
|
1376 // KeyctlBuffer calls keyctl commands in which the third and fourth
|
|
1377 // arguments are a buffer and its length, respectively.
|
|
1378 // These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
|
|
1379 //sys KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
|
|
1380
|
|
1381 // KeyctlString calls keyctl commands which return a string.
|
|
1382 // These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
|
|
1383 func KeyctlString(cmd int, id int) (string, error) {
|
|
1384 // We must loop as the string data may change in between the syscalls.
|
|
1385 // We could allocate a large buffer here to reduce the chance that the
|
|
1386 // syscall needs to be called twice; however, this is unnecessary as
|
|
1387 // the performance loss is negligible.
|
|
1388 var buffer []byte
|
|
1389 for {
|
|
1390 // Try to fill the buffer with data
|
|
1391 length, err := KeyctlBuffer(cmd, id, buffer, 0)
|
|
1392 if err != nil {
|
|
1393 return "", err
|
|
1394 }
|
|
1395
|
|
1396 // Check if the data was written
|
|
1397 if length <= len(buffer) {
|
|
1398 // Exclude the null terminator
|
|
1399 return string(buffer[:length-1]), nil
|
|
1400 }
|
|
1401
|
|
1402 // Make a bigger buffer if needed
|
|
1403 buffer = make([]byte, length)
|
|
1404 }
|
|
1405 }
|
|
1406
|
|
1407 // Keyctl commands with special signatures.
|
|
1408
|
|
1409 // KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
|
|
1410 // See the full documentation at:
|
|
1411 // http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
|
|
1412 func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
|
|
1413 createInt := 0
|
|
1414 if create {
|
|
1415 createInt = 1
|
|
1416 }
|
|
1417 return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
|
|
1418 }
|
|
1419
|
|
1420 // KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
|
|
1421 // key handle permission mask as described in the "keyctl setperm" section of
|
|
1422 // http://man7.org/linux/man-pages/man1/keyctl.1.html.
|
|
1423 // See the full documentation at:
|
|
1424 // http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
|
|
1425 func KeyctlSetperm(id int, perm uint32) error {
|
|
1426 _, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
|
|
1427 return err
|
|
1428 }
|
|
1429
|
|
1430 //sys keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
|
|
1431
|
|
1432 // KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
|
|
1433 // See the full documentation at:
|
|
1434 // http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
|
|
1435 func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
|
|
1436 return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
|
|
1437 }
|
|
1438
|
|
1439 //sys keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
|
|
1440
|
|
1441 // KeyctlSearch implements the KEYCTL_SEARCH command.
|
|
1442 // See the full documentation at:
|
|
1443 // http://man7.org/linux/man-pages/man3/keyctl_search.3.html
|
|
1444 func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
|
|
1445 return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
|
|
1446 }
|
|
1447
|
|
1448 //sys keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
|
|
1449
|
|
1450 // KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
|
|
1451 // command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
|
|
1452 // of Iovec (each of which represents a buffer) instead of a single buffer.
|
|
1453 // See the full documentation at:
|
|
1454 // http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
|
|
1455 func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
|
|
1456 return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
|
|
1457 }
|
|
1458
|
|
1459 //sys keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
|
|
1460
|
|
1461 // KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
|
|
1462 // computes a Diffie-Hellman shared secret based on the provide params. The
|
|
1463 // secret is written to the provided buffer and the returned size is the number
|
|
1464 // of bytes written (returning an error if there is insufficient space in the
|
|
1465 // buffer). If a nil buffer is passed in, this function returns the minimum
|
|
1466 // buffer length needed to store the appropriate data. Note that this differs
|
|
1467 // from KEYCTL_READ's behavior which always returns the requested payload size.
|
|
1468 // See the full documentation at:
|
|
1469 // http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
|
|
1470 func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
|
|
1471 return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
|
|
1472 }
|
|
1473
|
|
1474 // KeyctlRestrictKeyring implements the KEYCTL_RESTRICT_KEYRING command. This
|
|
1475 // command limits the set of keys that can be linked to the keyring, regardless
|
|
1476 // of keyring permissions. The command requires the "setattr" permission.
|
|
1477 //
|
|
1478 // When called with an empty keyType the command locks the keyring, preventing
|
|
1479 // any further keys from being linked to the keyring.
|
|
1480 //
|
|
1481 // The "asymmetric" keyType defines restrictions requiring key payloads to be
|
|
1482 // DER encoded X.509 certificates signed by keys in another keyring. Restrictions
|
|
1483 // for "asymmetric" include "builtin_trusted", "builtin_and_secondary_trusted",
|
|
1484 // "key_or_keyring:<key>", and "key_or_keyring:<key>:chain".
|
|
1485 //
|
|
1486 // As of Linux 4.12, only the "asymmetric" keyType defines type-specific
|
|
1487 // restrictions.
|
|
1488 //
|
|
1489 // See the full documentation at:
|
|
1490 // http://man7.org/linux/man-pages/man3/keyctl_restrict_keyring.3.html
|
|
1491 // http://man7.org/linux/man-pages/man2/keyctl.2.html
|
|
1492 func KeyctlRestrictKeyring(ringid int, keyType string, restriction string) error {
|
|
1493 if keyType == "" {
|
|
1494 return keyctlRestrictKeyring(KEYCTL_RESTRICT_KEYRING, ringid)
|
|
1495 }
|
|
1496 return keyctlRestrictKeyringByType(KEYCTL_RESTRICT_KEYRING, ringid, keyType, restriction)
|
|
1497 }
|
|
1498
|
|
1499 //sys keyctlRestrictKeyringByType(cmd int, arg2 int, keyType string, restriction string) (err error) = SYS_KEYCTL
|
|
1500 //sys keyctlRestrictKeyring(cmd int, arg2 int) (err error) = SYS_KEYCTL
|
|
1501
|
|
1502 func recvmsgRaw(fd int, iov []Iovec, oob []byte, flags int, rsa *RawSockaddrAny) (n, oobn int, recvflags int, err error) {
|
|
1503 var msg Msghdr
|
|
1504 msg.Name = (*byte)(unsafe.Pointer(rsa))
|
|
1505 msg.Namelen = uint32(SizeofSockaddrAny)
|
|
1506 var dummy byte
|
|
1507 if len(oob) > 0 {
|
|
1508 if emptyIovecs(iov) {
|
|
1509 var sockType int
|
|
1510 sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
|
|
1511 if err != nil {
|
|
1512 return
|
|
1513 }
|
|
1514 // receive at least one normal byte
|
|
1515 if sockType != SOCK_DGRAM {
|
|
1516 var iova [1]Iovec
|
|
1517 iova[0].Base = &dummy
|
|
1518 iova[0].SetLen(1)
|
|
1519 iov = iova[:]
|
|
1520 }
|
|
1521 }
|
|
1522 msg.Control = &oob[0]
|
|
1523 msg.SetControllen(len(oob))
|
|
1524 }
|
|
1525 if len(iov) > 0 {
|
|
1526 msg.Iov = &iov[0]
|
|
1527 msg.SetIovlen(len(iov))
|
|
1528 }
|
|
1529 if n, err = recvmsg(fd, &msg, flags); err != nil {
|
|
1530 return
|
|
1531 }
|
|
1532 oobn = int(msg.Controllen)
|
|
1533 recvflags = int(msg.Flags)
|
|
1534 return
|
|
1535 }
|
|
1536
|
|
1537 func sendmsgN(fd int, iov []Iovec, oob []byte, ptr unsafe.Pointer, salen _Socklen, flags int) (n int, err error) {
|
|
1538 var msg Msghdr
|
|
1539 msg.Name = (*byte)(ptr)
|
|
1540 msg.Namelen = uint32(salen)
|
|
1541 var dummy byte
|
|
1542 var empty bool
|
|
1543 if len(oob) > 0 {
|
|
1544 empty := emptyIovecs(iov)
|
|
1545 if empty {
|
|
1546 var sockType int
|
|
1547 sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
|
|
1548 if err != nil {
|
|
1549 return 0, err
|
|
1550 }
|
|
1551 // send at least one normal byte
|
|
1552 if sockType != SOCK_DGRAM {
|
|
1553 var iova [1]Iovec
|
|
1554 iova[0].Base = &dummy
|
|
1555 iova[0].SetLen(1)
|
|
1556 }
|
|
1557 }
|
|
1558 msg.Control = &oob[0]
|
|
1559 msg.SetControllen(len(oob))
|
|
1560 }
|
|
1561 if len(iov) > 0 {
|
|
1562 msg.Iov = &iov[0]
|
|
1563 msg.SetIovlen(len(iov))
|
|
1564 }
|
|
1565 if n, err = sendmsg(fd, &msg, flags); err != nil {
|
|
1566 return 0, err
|
|
1567 }
|
|
1568 if len(oob) > 0 && empty {
|
|
1569 n = 0
|
|
1570 }
|
|
1571 return n, nil
|
|
1572 }
|
|
1573
|
|
1574 // BindToDevice binds the socket associated with fd to device.
|
|
1575 func BindToDevice(fd int, device string) (err error) {
|
|
1576 return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
|
|
1577 }
|
|
1578
|
|
1579 //sys ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
|
|
1580
|
|
1581 func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
|
|
1582 // The peek requests are machine-size oriented, so we wrap it
|
|
1583 // to retrieve arbitrary-length data.
|
|
1584
|
|
1585 // The ptrace syscall differs from glibc's ptrace.
|
|
1586 // Peeks returns the word in *data, not as the return value.
|
|
1587
|
|
1588 var buf [SizeofPtr]byte
|
|
1589
|
|
1590 // Leading edge. PEEKTEXT/PEEKDATA don't require aligned
|
|
1591 // access (PEEKUSER warns that it might), but if we don't
|
|
1592 // align our reads, we might straddle an unmapped page
|
|
1593 // boundary and not get the bytes leading up to the page
|
|
1594 // boundary.
|
|
1595 n := 0
|
|
1596 if addr%SizeofPtr != 0 {
|
|
1597 err = ptrace(req, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
|
|
1598 if err != nil {
|
|
1599 return 0, err
|
|
1600 }
|
|
1601 n += copy(out, buf[addr%SizeofPtr:])
|
|
1602 out = out[n:]
|
|
1603 }
|
|
1604
|
|
1605 // Remainder.
|
|
1606 for len(out) > 0 {
|
|
1607 // We use an internal buffer to guarantee alignment.
|
|
1608 // It's not documented if this is necessary, but we're paranoid.
|
|
1609 err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
|
|
1610 if err != nil {
|
|
1611 return n, err
|
|
1612 }
|
|
1613 copied := copy(out, buf[0:])
|
|
1614 n += copied
|
|
1615 out = out[copied:]
|
|
1616 }
|
|
1617
|
|
1618 return n, nil
|
|
1619 }
|
|
1620
|
|
1621 func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
|
|
1622 return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
|
|
1623 }
|
|
1624
|
|
1625 func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
|
|
1626 return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
|
|
1627 }
|
|
1628
|
|
1629 func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
|
|
1630 return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
|
|
1631 }
|
|
1632
|
|
1633 func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
|
|
1634 // As for ptracePeek, we need to align our accesses to deal
|
|
1635 // with the possibility of straddling an invalid page.
|
|
1636
|
|
1637 // Leading edge.
|
|
1638 n := 0
|
|
1639 if addr%SizeofPtr != 0 {
|
|
1640 var buf [SizeofPtr]byte
|
|
1641 err = ptrace(peekReq, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
|
|
1642 if err != nil {
|
|
1643 return 0, err
|
|
1644 }
|
|
1645 n += copy(buf[addr%SizeofPtr:], data)
|
|
1646 word := *((*uintptr)(unsafe.Pointer(&buf[0])))
|
|
1647 err = ptrace(pokeReq, pid, addr-addr%SizeofPtr, word)
|
|
1648 if err != nil {
|
|
1649 return 0, err
|
|
1650 }
|
|
1651 data = data[n:]
|
|
1652 }
|
|
1653
|
|
1654 // Interior.
|
|
1655 for len(data) > SizeofPtr {
|
|
1656 word := *((*uintptr)(unsafe.Pointer(&data[0])))
|
|
1657 err = ptrace(pokeReq, pid, addr+uintptr(n), word)
|
|
1658 if err != nil {
|
|
1659 return n, err
|
|
1660 }
|
|
1661 n += SizeofPtr
|
|
1662 data = data[SizeofPtr:]
|
|
1663 }
|
|
1664
|
|
1665 // Trailing edge.
|
|
1666 if len(data) > 0 {
|
|
1667 var buf [SizeofPtr]byte
|
|
1668 err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
|
|
1669 if err != nil {
|
|
1670 return n, err
|
|
1671 }
|
|
1672 copy(buf[0:], data)
|
|
1673 word := *((*uintptr)(unsafe.Pointer(&buf[0])))
|
|
1674 err = ptrace(pokeReq, pid, addr+uintptr(n), word)
|
|
1675 if err != nil {
|
|
1676 return n, err
|
|
1677 }
|
|
1678 n += len(data)
|
|
1679 }
|
|
1680
|
|
1681 return n, nil
|
|
1682 }
|
|
1683
|
|
1684 func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
|
|
1685 return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
|
|
1686 }
|
|
1687
|
|
1688 func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
|
|
1689 return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
|
|
1690 }
|
|
1691
|
|
1692 func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
|
|
1693 return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
|
|
1694 }
|
|
1695
|
|
1696 func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
|
|
1697 return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
|
|
1698 }
|
|
1699
|
|
1700 func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
|
|
1701 return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
|
|
1702 }
|
|
1703
|
|
1704 func PtraceSetOptions(pid int, options int) (err error) {
|
|
1705 return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
|
|
1706 }
|
|
1707
|
|
1708 func PtraceGetEventMsg(pid int) (msg uint, err error) {
|
|
1709 var data _C_long
|
|
1710 err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
|
|
1711 msg = uint(data)
|
|
1712 return
|
|
1713 }
|
|
1714
|
|
1715 func PtraceCont(pid int, signal int) (err error) {
|
|
1716 return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
|
|
1717 }
|
|
1718
|
|
1719 func PtraceSyscall(pid int, signal int) (err error) {
|
|
1720 return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
|
|
1721 }
|
|
1722
|
|
1723 func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
|
|
1724
|
|
1725 func PtraceInterrupt(pid int) (err error) { return ptrace(PTRACE_INTERRUPT, pid, 0, 0) }
|
|
1726
|
|
1727 func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
|
|
1728
|
|
1729 func PtraceSeize(pid int) (err error) { return ptrace(PTRACE_SEIZE, pid, 0, 0) }
|
|
1730
|
|
1731 func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
|
|
1732
|
|
1733 //sys reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
|
|
1734
|
|
1735 func Reboot(cmd int) (err error) {
|
|
1736 return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
|
|
1737 }
|
|
1738
|
|
1739 func direntIno(buf []byte) (uint64, bool) {
|
|
1740 return readInt(buf, unsafe.Offsetof(Dirent{}.Ino), unsafe.Sizeof(Dirent{}.Ino))
|
|
1741 }
|
|
1742
|
|
1743 func direntReclen(buf []byte) (uint64, bool) {
|
|
1744 return readInt(buf, unsafe.Offsetof(Dirent{}.Reclen), unsafe.Sizeof(Dirent{}.Reclen))
|
|
1745 }
|
|
1746
|
|
1747 func direntNamlen(buf []byte) (uint64, bool) {
|
|
1748 reclen, ok := direntReclen(buf)
|
|
1749 if !ok {
|
|
1750 return 0, false
|
|
1751 }
|
|
1752 return reclen - uint64(unsafe.Offsetof(Dirent{}.Name)), true
|
|
1753 }
|
|
1754
|
|
1755 //sys mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
|
|
1756
|
|
1757 func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
|
|
1758 // Certain file systems get rather angry and EINVAL if you give
|
|
1759 // them an empty string of data, rather than NULL.
|
|
1760 if data == "" {
|
|
1761 return mount(source, target, fstype, flags, nil)
|
|
1762 }
|
|
1763 datap, err := BytePtrFromString(data)
|
|
1764 if err != nil {
|
|
1765 return err
|
|
1766 }
|
|
1767 return mount(source, target, fstype, flags, datap)
|
|
1768 }
|
|
1769
|
|
1770 //sys mountSetattr(dirfd int, pathname string, flags uint, attr *MountAttr, size uintptr) (err error) = SYS_MOUNT_SETATTR
|
|
1771
|
|
1772 // MountSetattr is a wrapper for mount_setattr(2).
|
|
1773 // https://man7.org/linux/man-pages/man2/mount_setattr.2.html
|
|
1774 //
|
|
1775 // Requires kernel >= 5.12.
|
|
1776 func MountSetattr(dirfd int, pathname string, flags uint, attr *MountAttr) error {
|
|
1777 return mountSetattr(dirfd, pathname, flags, attr, unsafe.Sizeof(*attr))
|
|
1778 }
|
|
1779
|
|
1780 func Sendfile(outfd int, infd int, offset *int64, count int) (written int, err error) {
|
|
1781 if raceenabled {
|
|
1782 raceReleaseMerge(unsafe.Pointer(&ioSync))
|
|
1783 }
|
|
1784 return sendfile(outfd, infd, offset, count)
|
|
1785 }
|
|
1786
|
|
1787 // Sendto
|
|
1788 // Recvfrom
|
|
1789 // Socketpair
|
|
1790
|
|
1791 /*
|
|
1792 * Direct access
|
|
1793 */
|
|
1794 //sys Acct(path string) (err error)
|
|
1795 //sys AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
|
|
1796 //sys Adjtimex(buf *Timex) (state int, err error)
|
|
1797 //sysnb Capget(hdr *CapUserHeader, data *CapUserData) (err error)
|
|
1798 //sysnb Capset(hdr *CapUserHeader, data *CapUserData) (err error)
|
|
1799 //sys Chdir(path string) (err error)
|
|
1800 //sys Chroot(path string) (err error)
|
|
1801 //sys ClockGetres(clockid int32, res *Timespec) (err error)
|
|
1802 //sys ClockGettime(clockid int32, time *Timespec) (err error)
|
|
1803 //sys ClockNanosleep(clockid int32, flags int, request *Timespec, remain *Timespec) (err error)
|
|
1804 //sys Close(fd int) (err error)
|
|
1805 //sys CloseRange(first uint, last uint, flags uint) (err error)
|
|
1806 //sys CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
|
|
1807 //sys DeleteModule(name string, flags int) (err error)
|
|
1808 //sys Dup(oldfd int) (fd int, err error)
|
|
1809
|
|
1810 func Dup2(oldfd, newfd int) error {
|
|
1811 return Dup3(oldfd, newfd, 0)
|
|
1812 }
|
|
1813
|
|
1814 //sys Dup3(oldfd int, newfd int, flags int) (err error)
|
|
1815 //sysnb EpollCreate1(flag int) (fd int, err error)
|
|
1816 //sysnb EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
|
|
1817 //sys Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
|
|
1818 //sys Exit(code int) = SYS_EXIT_GROUP
|
|
1819 //sys Fallocate(fd int, mode uint32, off int64, len int64) (err error)
|
|
1820 //sys Fchdir(fd int) (err error)
|
|
1821 //sys Fchmod(fd int, mode uint32) (err error)
|
|
1822 //sys Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
|
|
1823 //sys Fdatasync(fd int) (err error)
|
|
1824 //sys Fgetxattr(fd int, attr string, dest []byte) (sz int, err error)
|
|
1825 //sys FinitModule(fd int, params string, flags int) (err error)
|
|
1826 //sys Flistxattr(fd int, dest []byte) (sz int, err error)
|
|
1827 //sys Flock(fd int, how int) (err error)
|
|
1828 //sys Fremovexattr(fd int, attr string) (err error)
|
|
1829 //sys Fsetxattr(fd int, attr string, dest []byte, flags int) (err error)
|
|
1830 //sys Fsync(fd int) (err error)
|
|
1831 //sys Fsmount(fd int, flags int, mountAttrs int) (fsfd int, err error)
|
|
1832 //sys Fsopen(fsName string, flags int) (fd int, err error)
|
|
1833 //sys Fspick(dirfd int, pathName string, flags int) (fd int, err error)
|
|
1834 //sys Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
|
|
1835 //sysnb Getpgid(pid int) (pgid int, err error)
|
|
1836
|
|
1837 func Getpgrp() (pid int) {
|
|
1838 pid, _ = Getpgid(0)
|
|
1839 return
|
|
1840 }
|
|
1841
|
|
1842 //sysnb Getpid() (pid int)
|
|
1843 //sysnb Getppid() (ppid int)
|
|
1844 //sys Getpriority(which int, who int) (prio int, err error)
|
|
1845 //sys Getrandom(buf []byte, flags int) (n int, err error)
|
|
1846 //sysnb Getrusage(who int, rusage *Rusage) (err error)
|
|
1847 //sysnb Getsid(pid int) (sid int, err error)
|
|
1848 //sysnb Gettid() (tid int)
|
|
1849 //sys Getxattr(path string, attr string, dest []byte) (sz int, err error)
|
|
1850 //sys InitModule(moduleImage []byte, params string) (err error)
|
|
1851 //sys InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
|
|
1852 //sysnb InotifyInit1(flags int) (fd int, err error)
|
|
1853 //sysnb InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
|
|
1854 //sysnb Kill(pid int, sig syscall.Signal) (err error)
|
|
1855 //sys Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
|
|
1856 //sys Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
|
|
1857 //sys Listxattr(path string, dest []byte) (sz int, err error)
|
|
1858 //sys Llistxattr(path string, dest []byte) (sz int, err error)
|
|
1859 //sys Lremovexattr(path string, attr string) (err error)
|
|
1860 //sys Lsetxattr(path string, attr string, data []byte, flags int) (err error)
|
|
1861 //sys MemfdCreate(name string, flags int) (fd int, err error)
|
|
1862 //sys Mkdirat(dirfd int, path string, mode uint32) (err error)
|
|
1863 //sys Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
|
|
1864 //sys MoveMount(fromDirfd int, fromPathName string, toDirfd int, toPathName string, flags int) (err error)
|
|
1865 //sys Nanosleep(time *Timespec, leftover *Timespec) (err error)
|
|
1866 //sys OpenTree(dfd int, fileName string, flags uint) (r int, err error)
|
|
1867 //sys PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
|
|
1868 //sys PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
|
|
1869 //sysnb Prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
|
|
1870 //sys Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
|
|
1871 //sys Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
|
|
1872 //sys read(fd int, p []byte) (n int, err error)
|
|
1873 //sys Removexattr(path string, attr string) (err error)
|
|
1874 //sys Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error)
|
|
1875 //sys RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
|
|
1876 //sys Setdomainname(p []byte) (err error)
|
|
1877 //sys Sethostname(p []byte) (err error)
|
|
1878 //sysnb Setpgid(pid int, pgid int) (err error)
|
|
1879 //sysnb Setsid() (pid int, err error)
|
|
1880 //sysnb Settimeofday(tv *Timeval) (err error)
|
|
1881 //sys Setns(fd int, nstype int) (err error)
|
|
1882
|
|
1883 // PrctlRetInt performs a prctl operation specified by option and further
|
|
1884 // optional arguments arg2 through arg5 depending on option. It returns a
|
|
1885 // non-negative integer that is returned by the prctl syscall.
|
|
1886 func PrctlRetInt(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (int, error) {
|
|
1887 ret, _, err := Syscall6(SYS_PRCTL, uintptr(option), uintptr(arg2), uintptr(arg3), uintptr(arg4), uintptr(arg5), 0)
|
|
1888 if err != 0 {
|
|
1889 return 0, err
|
|
1890 }
|
|
1891 return int(ret), nil
|
|
1892 }
|
|
1893
|
|
1894 // issue 1435.
|
|
1895 // On linux Setuid and Setgid only affects the current thread, not the process.
|
|
1896 // This does not match what most callers expect so we must return an error
|
|
1897 // here rather than letting the caller think that the call succeeded.
|
|
1898
|
|
1899 func Setuid(uid int) (err error) {
|
|
1900 return EOPNOTSUPP
|
|
1901 }
|
|
1902
|
|
1903 func Setgid(uid int) (err error) {
|
|
1904 return EOPNOTSUPP
|
|
1905 }
|
|
1906
|
|
1907 // SetfsgidRetGid sets fsgid for current thread and returns previous fsgid set.
|
|
1908 // setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability.
|
|
1909 // If the call fails due to other reasons, current fsgid will be returned.
|
|
1910 func SetfsgidRetGid(gid int) (int, error) {
|
|
1911 return setfsgid(gid)
|
|
1912 }
|
|
1913
|
|
1914 // SetfsuidRetUid sets fsuid for current thread and returns previous fsuid set.
|
|
1915 // setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability
|
|
1916 // If the call fails due to other reasons, current fsuid will be returned.
|
|
1917 func SetfsuidRetUid(uid int) (int, error) {
|
|
1918 return setfsuid(uid)
|
|
1919 }
|
|
1920
|
|
1921 func Setfsgid(gid int) error {
|
|
1922 _, err := setfsgid(gid)
|
|
1923 return err
|
|
1924 }
|
|
1925
|
|
1926 func Setfsuid(uid int) error {
|
|
1927 _, err := setfsuid(uid)
|
|
1928 return err
|
|
1929 }
|
|
1930
|
|
1931 func Signalfd(fd int, sigmask *Sigset_t, flags int) (newfd int, err error) {
|
|
1932 return signalfd(fd, sigmask, _C__NSIG/8, flags)
|
|
1933 }
|
|
1934
|
|
1935 //sys Setpriority(which int, who int, prio int) (err error)
|
|
1936 //sys Setxattr(path string, attr string, data []byte, flags int) (err error)
|
|
1937 //sys signalfd(fd int, sigmask *Sigset_t, maskSize uintptr, flags int) (newfd int, err error) = SYS_SIGNALFD4
|
|
1938 //sys Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
|
|
1939 //sys Sync()
|
|
1940 //sys Syncfs(fd int) (err error)
|
|
1941 //sysnb Sysinfo(info *Sysinfo_t) (err error)
|
|
1942 //sys Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
|
|
1943 //sysnb TimerfdCreate(clockid int, flags int) (fd int, err error)
|
|
1944 //sysnb TimerfdGettime(fd int, currValue *ItimerSpec) (err error)
|
|
1945 //sysnb TimerfdSettime(fd int, flags int, newValue *ItimerSpec, oldValue *ItimerSpec) (err error)
|
|
1946 //sysnb Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
|
|
1947 //sysnb Times(tms *Tms) (ticks uintptr, err error)
|
|
1948 //sysnb Umask(mask int) (oldmask int)
|
|
1949 //sysnb Uname(buf *Utsname) (err error)
|
|
1950 //sys Unmount(target string, flags int) (err error) = SYS_UMOUNT2
|
|
1951 //sys Unshare(flags int) (err error)
|
|
1952 //sys write(fd int, p []byte) (n int, err error)
|
|
1953 //sys exitThread(code int) (err error) = SYS_EXIT
|
|
1954 //sys readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
|
|
1955 //sys writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
|
|
1956 //sys readv(fd int, iovs []Iovec) (n int, err error) = SYS_READV
|
|
1957 //sys writev(fd int, iovs []Iovec) (n int, err error) = SYS_WRITEV
|
|
1958 //sys preadv(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PREADV
|
|
1959 //sys pwritev(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PWRITEV
|
|
1960 //sys preadv2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PREADV2
|
|
1961 //sys pwritev2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PWRITEV2
|
|
1962
|
|
1963 func bytes2iovec(bs [][]byte) []Iovec {
|
|
1964 iovecs := make([]Iovec, len(bs))
|
|
1965 for i, b := range bs {
|
|
1966 iovecs[i].SetLen(len(b))
|
|
1967 if len(b) > 0 {
|
|
1968 iovecs[i].Base = &b[0]
|
|
1969 } else {
|
|
1970 iovecs[i].Base = (*byte)(unsafe.Pointer(&_zero))
|
|
1971 }
|
|
1972 }
|
|
1973 return iovecs
|
|
1974 }
|
|
1975
|
|
1976 // offs2lohi splits offs into its lower and upper unsigned long. On 64-bit
|
|
1977 // systems, hi will always be 0. On 32-bit systems, offs will be split in half.
|
|
1978 // preadv/pwritev chose this calling convention so they don't need to add a
|
|
1979 // padding-register for alignment on ARM.
|
|
1980 func offs2lohi(offs int64) (lo, hi uintptr) {
|
|
1981 return uintptr(offs), uintptr(uint64(offs) >> SizeofLong)
|
|
1982 }
|
|
1983
|
|
1984 func Readv(fd int, iovs [][]byte) (n int, err error) {
|
|
1985 iovecs := bytes2iovec(iovs)
|
|
1986 n, err = readv(fd, iovecs)
|
|
1987 readvRacedetect(iovecs, n, err)
|
|
1988 return n, err
|
|
1989 }
|
|
1990
|
|
1991 func Preadv(fd int, iovs [][]byte, offset int64) (n int, err error) {
|
|
1992 iovecs := bytes2iovec(iovs)
|
|
1993 lo, hi := offs2lohi(offset)
|
|
1994 n, err = preadv(fd, iovecs, lo, hi)
|
|
1995 readvRacedetect(iovecs, n, err)
|
|
1996 return n, err
|
|
1997 }
|
|
1998
|
|
1999 func Preadv2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
|
|
2000 iovecs := bytes2iovec(iovs)
|
|
2001 lo, hi := offs2lohi(offset)
|
|
2002 n, err = preadv2(fd, iovecs, lo, hi, flags)
|
|
2003 readvRacedetect(iovecs, n, err)
|
|
2004 return n, err
|
|
2005 }
|
|
2006
|
|
2007 func readvRacedetect(iovecs []Iovec, n int, err error) {
|
|
2008 if !raceenabled {
|
|
2009 return
|
|
2010 }
|
|
2011 for i := 0; n > 0 && i < len(iovecs); i++ {
|
|
2012 m := int(iovecs[i].Len)
|
|
2013 if m > n {
|
|
2014 m = n
|
|
2015 }
|
|
2016 n -= m
|
|
2017 if m > 0 {
|
|
2018 raceWriteRange(unsafe.Pointer(iovecs[i].Base), m)
|
|
2019 }
|
|
2020 }
|
|
2021 if err == nil {
|
|
2022 raceAcquire(unsafe.Pointer(&ioSync))
|
|
2023 }
|
|
2024 }
|
|
2025
|
|
2026 func Writev(fd int, iovs [][]byte) (n int, err error) {
|
|
2027 iovecs := bytes2iovec(iovs)
|
|
2028 if raceenabled {
|
|
2029 raceReleaseMerge(unsafe.Pointer(&ioSync))
|
|
2030 }
|
|
2031 n, err = writev(fd, iovecs)
|
|
2032 writevRacedetect(iovecs, n)
|
|
2033 return n, err
|
|
2034 }
|
|
2035
|
|
2036 func Pwritev(fd int, iovs [][]byte, offset int64) (n int, err error) {
|
|
2037 iovecs := bytes2iovec(iovs)
|
|
2038 if raceenabled {
|
|
2039 raceReleaseMerge(unsafe.Pointer(&ioSync))
|
|
2040 }
|
|
2041 lo, hi := offs2lohi(offset)
|
|
2042 n, err = pwritev(fd, iovecs, lo, hi)
|
|
2043 writevRacedetect(iovecs, n)
|
|
2044 return n, err
|
|
2045 }
|
|
2046
|
|
2047 func Pwritev2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
|
|
2048 iovecs := bytes2iovec(iovs)
|
|
2049 if raceenabled {
|
|
2050 raceReleaseMerge(unsafe.Pointer(&ioSync))
|
|
2051 }
|
|
2052 lo, hi := offs2lohi(offset)
|
|
2053 n, err = pwritev2(fd, iovecs, lo, hi, flags)
|
|
2054 writevRacedetect(iovecs, n)
|
|
2055 return n, err
|
|
2056 }
|
|
2057
|
|
2058 func writevRacedetect(iovecs []Iovec, n int) {
|
|
2059 if !raceenabled {
|
|
2060 return
|
|
2061 }
|
|
2062 for i := 0; n > 0 && i < len(iovecs); i++ {
|
|
2063 m := int(iovecs[i].Len)
|
|
2064 if m > n {
|
|
2065 m = n
|
|
2066 }
|
|
2067 n -= m
|
|
2068 if m > 0 {
|
|
2069 raceReadRange(unsafe.Pointer(iovecs[i].Base), m)
|
|
2070 }
|
|
2071 }
|
|
2072 }
|
|
2073
|
|
2074 // mmap varies by architecture; see syscall_linux_*.go.
|
|
2075 //sys munmap(addr uintptr, length uintptr) (err error)
|
|
2076
|
|
2077 var mapper = &mmapper{
|
|
2078 active: make(map[*byte][]byte),
|
|
2079 mmap: mmap,
|
|
2080 munmap: munmap,
|
|
2081 }
|
|
2082
|
|
2083 func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
|
|
2084 return mapper.Mmap(fd, offset, length, prot, flags)
|
|
2085 }
|
|
2086
|
|
2087 func Munmap(b []byte) (err error) {
|
|
2088 return mapper.Munmap(b)
|
|
2089 }
|
|
2090
|
|
2091 //sys Madvise(b []byte, advice int) (err error)
|
|
2092 //sys Mprotect(b []byte, prot int) (err error)
|
|
2093 //sys Mlock(b []byte) (err error)
|
|
2094 //sys Mlockall(flags int) (err error)
|
|
2095 //sys Msync(b []byte, flags int) (err error)
|
|
2096 //sys Munlock(b []byte) (err error)
|
|
2097 //sys Munlockall() (err error)
|
|
2098
|
|
2099 // Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
|
|
2100 // using the specified flags.
|
|
2101 func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
|
|
2102 var p unsafe.Pointer
|
|
2103 if len(iovs) > 0 {
|
|
2104 p = unsafe.Pointer(&iovs[0])
|
|
2105 }
|
|
2106
|
|
2107 n, _, errno := Syscall6(SYS_VMSPLICE, uintptr(fd), uintptr(p), uintptr(len(iovs)), uintptr(flags), 0, 0)
|
|
2108 if errno != 0 {
|
|
2109 return 0, syscall.Errno(errno)
|
|
2110 }
|
|
2111
|
|
2112 return int(n), nil
|
|
2113 }
|
|
2114
|
|
2115 func isGroupMember(gid int) bool {
|
|
2116 groups, err := Getgroups()
|
|
2117 if err != nil {
|
|
2118 return false
|
|
2119 }
|
|
2120
|
|
2121 for _, g := range groups {
|
|
2122 if g == gid {
|
|
2123 return true
|
|
2124 }
|
|
2125 }
|
|
2126 return false
|
|
2127 }
|
|
2128
|
|
2129 //sys faccessat(dirfd int, path string, mode uint32) (err error)
|
|
2130 //sys Faccessat2(dirfd int, path string, mode uint32, flags int) (err error)
|
|
2131
|
|
2132 func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) {
|
|
2133 if flags == 0 {
|
|
2134 return faccessat(dirfd, path, mode)
|
|
2135 }
|
|
2136
|
|
2137 if err := Faccessat2(dirfd, path, mode, flags); err != ENOSYS && err != EPERM {
|
|
2138 return err
|
|
2139 }
|
|
2140
|
|
2141 // The Linux kernel faccessat system call does not take any flags.
|
|
2142 // The glibc faccessat implements the flags itself; see
|
|
2143 // https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD
|
|
2144 // Because people naturally expect syscall.Faccessat to act
|
|
2145 // like C faccessat, we do the same.
|
|
2146
|
|
2147 if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
|
|
2148 return EINVAL
|
|
2149 }
|
|
2150
|
|
2151 var st Stat_t
|
|
2152 if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil {
|
|
2153 return err
|
|
2154 }
|
|
2155
|
|
2156 mode &= 7
|
|
2157 if mode == 0 {
|
|
2158 return nil
|
|
2159 }
|
|
2160
|
|
2161 var uid int
|
|
2162 if flags&AT_EACCESS != 0 {
|
|
2163 uid = Geteuid()
|
|
2164 } else {
|
|
2165 uid = Getuid()
|
|
2166 }
|
|
2167
|
|
2168 if uid == 0 {
|
|
2169 if mode&1 == 0 {
|
|
2170 // Root can read and write any file.
|
|
2171 return nil
|
|
2172 }
|
|
2173 if st.Mode&0111 != 0 {
|
|
2174 // Root can execute any file that anybody can execute.
|
|
2175 return nil
|
|
2176 }
|
|
2177 return EACCES
|
|
2178 }
|
|
2179
|
|
2180 var fmode uint32
|
|
2181 if uint32(uid) == st.Uid {
|
|
2182 fmode = (st.Mode >> 6) & 7
|
|
2183 } else {
|
|
2184 var gid int
|
|
2185 if flags&AT_EACCESS != 0 {
|
|
2186 gid = Getegid()
|
|
2187 } else {
|
|
2188 gid = Getgid()
|
|
2189 }
|
|
2190
|
|
2191 if uint32(gid) == st.Gid || isGroupMember(int(st.Gid)) {
|
|
2192 fmode = (st.Mode >> 3) & 7
|
|
2193 } else {
|
|
2194 fmode = st.Mode & 7
|
|
2195 }
|
|
2196 }
|
|
2197
|
|
2198 if fmode&mode == mode {
|
|
2199 return nil
|
|
2200 }
|
|
2201
|
|
2202 return EACCES
|
|
2203 }
|
|
2204
|
|
2205 //sys nameToHandleAt(dirFD int, pathname string, fh *fileHandle, mountID *_C_int, flags int) (err error) = SYS_NAME_TO_HANDLE_AT
|
|
2206 //sys openByHandleAt(mountFD int, fh *fileHandle, flags int) (fd int, err error) = SYS_OPEN_BY_HANDLE_AT
|
|
2207
|
|
2208 // fileHandle is the argument to nameToHandleAt and openByHandleAt. We
|
|
2209 // originally tried to generate it via unix/linux/types.go with "type
|
|
2210 // fileHandle C.struct_file_handle" but that generated empty structs
|
|
2211 // for mips64 and mips64le. Instead, hard code it for now (it's the
|
|
2212 // same everywhere else) until the mips64 generator issue is fixed.
|
|
2213 type fileHandle struct {
|
|
2214 Bytes uint32
|
|
2215 Type int32
|
|
2216 }
|
|
2217
|
|
2218 // FileHandle represents the C struct file_handle used by
|
|
2219 // name_to_handle_at (see NameToHandleAt) and open_by_handle_at (see
|
|
2220 // OpenByHandleAt).
|
|
2221 type FileHandle struct {
|
|
2222 *fileHandle
|
|
2223 }
|
|
2224
|
|
2225 // NewFileHandle constructs a FileHandle.
|
|
2226 func NewFileHandle(handleType int32, handle []byte) FileHandle {
|
|
2227 const hdrSize = unsafe.Sizeof(fileHandle{})
|
|
2228 buf := make([]byte, hdrSize+uintptr(len(handle)))
|
|
2229 copy(buf[hdrSize:], handle)
|
|
2230 fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
|
|
2231 fh.Type = handleType
|
|
2232 fh.Bytes = uint32(len(handle))
|
|
2233 return FileHandle{fh}
|
|
2234 }
|
|
2235
|
|
2236 func (fh *FileHandle) Size() int { return int(fh.fileHandle.Bytes) }
|
|
2237 func (fh *FileHandle) Type() int32 { return fh.fileHandle.Type }
|
|
2238 func (fh *FileHandle) Bytes() []byte {
|
|
2239 n := fh.Size()
|
|
2240 if n == 0 {
|
|
2241 return nil
|
|
2242 }
|
|
2243 return (*[1 << 30]byte)(unsafe.Pointer(uintptr(unsafe.Pointer(&fh.fileHandle.Type)) + 4))[:n:n]
|
|
2244 }
|
|
2245
|
|
2246 // NameToHandleAt wraps the name_to_handle_at system call; it obtains
|
|
2247 // a handle for a path name.
|
|
2248 func NameToHandleAt(dirfd int, path string, flags int) (handle FileHandle, mountID int, err error) {
|
|
2249 var mid _C_int
|
|
2250 // Try first with a small buffer, assuming the handle will
|
|
2251 // only be 32 bytes.
|
|
2252 size := uint32(32 + unsafe.Sizeof(fileHandle{}))
|
|
2253 didResize := false
|
|
2254 for {
|
|
2255 buf := make([]byte, size)
|
|
2256 fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
|
|
2257 fh.Bytes = size - uint32(unsafe.Sizeof(fileHandle{}))
|
|
2258 err = nameToHandleAt(dirfd, path, fh, &mid, flags)
|
|
2259 if err == EOVERFLOW {
|
|
2260 if didResize {
|
|
2261 // We shouldn't need to resize more than once
|
|
2262 return
|
|
2263 }
|
|
2264 didResize = true
|
|
2265 size = fh.Bytes + uint32(unsafe.Sizeof(fileHandle{}))
|
|
2266 continue
|
|
2267 }
|
|
2268 if err != nil {
|
|
2269 return
|
|
2270 }
|
|
2271 return FileHandle{fh}, int(mid), nil
|
|
2272 }
|
|
2273 }
|
|
2274
|
|
2275 // OpenByHandleAt wraps the open_by_handle_at system call; it opens a
|
|
2276 // file via a handle as previously returned by NameToHandleAt.
|
|
2277 func OpenByHandleAt(mountFD int, handle FileHandle, flags int) (fd int, err error) {
|
|
2278 return openByHandleAt(mountFD, handle.fileHandle, flags)
|
|
2279 }
|
|
2280
|
|
2281 // Klogset wraps the sys_syslog system call; it sets console_loglevel to
|
|
2282 // the value specified by arg and passes a dummy pointer to bufp.
|
|
2283 func Klogset(typ int, arg int) (err error) {
|
|
2284 var p unsafe.Pointer
|
|
2285 _, _, errno := Syscall(SYS_SYSLOG, uintptr(typ), uintptr(p), uintptr(arg))
|
|
2286 if errno != 0 {
|
|
2287 return errnoErr(errno)
|
|
2288 }
|
|
2289 return nil
|
|
2290 }
|
|
2291
|
|
2292 // RemoteIovec is Iovec with the pointer replaced with an integer.
|
|
2293 // It is used for ProcessVMReadv and ProcessVMWritev, where the pointer
|
|
2294 // refers to a location in a different process' address space, which
|
|
2295 // would confuse the Go garbage collector.
|
|
2296 type RemoteIovec struct {
|
|
2297 Base uintptr
|
|
2298 Len int
|
|
2299 }
|
|
2300
|
|
2301 //sys ProcessVMReadv(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_READV
|
|
2302 //sys ProcessVMWritev(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_WRITEV
|
|
2303
|
|
2304 //sys PidfdOpen(pid int, flags int) (fd int, err error) = SYS_PIDFD_OPEN
|
|
2305 //sys PidfdGetfd(pidfd int, targetfd int, flags int) (fd int, err error) = SYS_PIDFD_GETFD
|
|
2306 //sys PidfdSendSignal(pidfd int, sig Signal, info *Siginfo, flags int) (err error) = SYS_PIDFD_SEND_SIGNAL
|
|
2307
|
|
2308 //sys shmat(id int, addr uintptr, flag int) (ret uintptr, err error)
|
|
2309 //sys shmctl(id int, cmd int, buf *SysvShmDesc) (result int, err error)
|
|
2310 //sys shmdt(addr uintptr) (err error)
|
|
2311 //sys shmget(key int, size int, flag int) (id int, err error)
|
|
2312
|
|
2313 //sys getitimer(which int, currValue *Itimerval) (err error)
|
|
2314 //sys setitimer(which int, newValue *Itimerval, oldValue *Itimerval) (err error)
|
|
2315
|
|
2316 // MakeItimerval creates an Itimerval from interval and value durations.
|
|
2317 func MakeItimerval(interval, value time.Duration) Itimerval {
|
|
2318 return Itimerval{
|
|
2319 Interval: NsecToTimeval(interval.Nanoseconds()),
|
|
2320 Value: NsecToTimeval(value.Nanoseconds()),
|
|
2321 }
|
|
2322 }
|
|
2323
|
|
2324 // A value which may be passed to the which parameter for Getitimer and
|
|
2325 // Setitimer.
|
|
2326 type ItimerWhich int
|
|
2327
|
|
2328 // Possible which values for Getitimer and Setitimer.
|
|
2329 const (
|
|
2330 ItimerReal ItimerWhich = ITIMER_REAL
|
|
2331 ItimerVirtual ItimerWhich = ITIMER_VIRTUAL
|
|
2332 ItimerProf ItimerWhich = ITIMER_PROF
|
|
2333 )
|
|
2334
|
|
2335 // Getitimer wraps getitimer(2) to return the current value of the timer
|
|
2336 // specified by which.
|
|
2337 func Getitimer(which ItimerWhich) (Itimerval, error) {
|
|
2338 var it Itimerval
|
|
2339 if err := getitimer(int(which), &it); err != nil {
|
|
2340 return Itimerval{}, err
|
|
2341 }
|
|
2342
|
|
2343 return it, nil
|
|
2344 }
|
|
2345
|
|
2346 // Setitimer wraps setitimer(2) to arm or disarm the timer specified by which.
|
|
2347 // It returns the previous value of the timer.
|
|
2348 //
|
|
2349 // If the Itimerval argument is the zero value, the timer will be disarmed.
|
|
2350 func Setitimer(which ItimerWhich, it Itimerval) (Itimerval, error) {
|
|
2351 var prev Itimerval
|
|
2352 if err := setitimer(int(which), &it, &prev); err != nil {
|
|
2353 return Itimerval{}, err
|
|
2354 }
|
|
2355
|
|
2356 return prev, nil
|
|
2357 }
|
|
2358
|
|
2359 /*
|
|
2360 * Unimplemented
|
|
2361 */
|
|
2362 // AfsSyscall
|
|
2363 // ArchPrctl
|
|
2364 // Brk
|
|
2365 // ClockNanosleep
|
|
2366 // ClockSettime
|
|
2367 // Clone
|
|
2368 // EpollCtlOld
|
|
2369 // EpollPwait
|
|
2370 // EpollWaitOld
|
|
2371 // Execve
|
|
2372 // Fork
|
|
2373 // Futex
|
|
2374 // GetKernelSyms
|
|
2375 // GetMempolicy
|
|
2376 // GetRobustList
|
|
2377 // GetThreadArea
|
|
2378 // Getpmsg
|
|
2379 // IoCancel
|
|
2380 // IoDestroy
|
|
2381 // IoGetevents
|
|
2382 // IoSetup
|
|
2383 // IoSubmit
|
|
2384 // IoprioGet
|
|
2385 // IoprioSet
|
|
2386 // KexecLoad
|
|
2387 // LookupDcookie
|
|
2388 // Mbind
|
|
2389 // MigratePages
|
|
2390 // Mincore
|
|
2391 // ModifyLdt
|
|
2392 // Mount
|
|
2393 // MovePages
|
|
2394 // MqGetsetattr
|
|
2395 // MqNotify
|
|
2396 // MqOpen
|
|
2397 // MqTimedreceive
|
|
2398 // MqTimedsend
|
|
2399 // MqUnlink
|
|
2400 // Mremap
|
|
2401 // Msgctl
|
|
2402 // Msgget
|
|
2403 // Msgrcv
|
|
2404 // Msgsnd
|
|
2405 // Nfsservctl
|
|
2406 // Personality
|
|
2407 // Pselect6
|
|
2408 // Ptrace
|
|
2409 // Putpmsg
|
|
2410 // Quotactl
|
|
2411 // Readahead
|
|
2412 // Readv
|
|
2413 // RemapFilePages
|
|
2414 // RestartSyscall
|
|
2415 // RtSigaction
|
|
2416 // RtSigpending
|
|
2417 // RtSigprocmask
|
|
2418 // RtSigqueueinfo
|
|
2419 // RtSigreturn
|
|
2420 // RtSigsuspend
|
|
2421 // RtSigtimedwait
|
|
2422 // SchedGetPriorityMax
|
|
2423 // SchedGetPriorityMin
|
|
2424 // SchedGetparam
|
|
2425 // SchedGetscheduler
|
|
2426 // SchedRrGetInterval
|
|
2427 // SchedSetparam
|
|
2428 // SchedYield
|
|
2429 // Security
|
|
2430 // Semctl
|
|
2431 // Semget
|
|
2432 // Semop
|
|
2433 // Semtimedop
|
|
2434 // SetMempolicy
|
|
2435 // SetRobustList
|
|
2436 // SetThreadArea
|
|
2437 // SetTidAddress
|
|
2438 // Sigaltstack
|
|
2439 // Swapoff
|
|
2440 // Swapon
|
|
2441 // Sysfs
|
|
2442 // TimerCreate
|
|
2443 // TimerDelete
|
|
2444 // TimerGetoverrun
|
|
2445 // TimerGettime
|
|
2446 // TimerSettime
|
|
2447 // Tkill (obsolete)
|
|
2448 // Tuxcall
|
|
2449 // Umount2
|
|
2450 // Uselib
|
|
2451 // Utimensat
|
|
2452 // Vfork
|
|
2453 // Vhangup
|
|
2454 // Vserver
|
|
2455 // _Sysctl
|