comparison vendor/golang.org/x/sys/unix/syscall_linux.go @ 66:787b5ee0289d draft

Use vendored modules Signed-off-by: Izuru Yakumo <yakumo.izuru@chaotic.ninja>
author yakumo.izuru
date Sun, 23 Jul 2023 13:18:53 +0000
parents
children 4b79810863f6
comparison
equal deleted inserted replaced
65:6d985efa0f7a 66:787b5ee0289d
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 // Linux system calls.
6 // This file is compiled as ordinary Go code,
7 // but it is also input to mksyscall,
8 // which parses the //sys lines and generates system call stubs.
9 // Note that sometimes we use a lowercase //sys name and
10 // wrap it in our own nicer implementation.
11
12 package unix
13
14 import (
15 "encoding/binary"
16 "syscall"
17 "time"
18 "unsafe"
19 )
20
21 /*
22 * Wrapped
23 */
24
25 func Access(path string, mode uint32) (err error) {
26 return Faccessat(AT_FDCWD, path, mode, 0)
27 }
28
29 func Chmod(path string, mode uint32) (err error) {
30 return Fchmodat(AT_FDCWD, path, mode, 0)
31 }
32
33 func Chown(path string, uid int, gid int) (err error) {
34 return Fchownat(AT_FDCWD, path, uid, gid, 0)
35 }
36
37 func Creat(path string, mode uint32) (fd int, err error) {
38 return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
39 }
40
41 func EpollCreate(size int) (fd int, err error) {
42 if size <= 0 {
43 return -1, EINVAL
44 }
45 return EpollCreate1(0)
46 }
47
48 //sys FanotifyInit(flags uint, event_f_flags uint) (fd int, err error)
49 //sys fanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname *byte) (err error)
50
51 func FanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname string) (err error) {
52 if pathname == "" {
53 return fanotifyMark(fd, flags, mask, dirFd, nil)
54 }
55 p, err := BytePtrFromString(pathname)
56 if err != nil {
57 return err
58 }
59 return fanotifyMark(fd, flags, mask, dirFd, p)
60 }
61
62 //sys fchmodat(dirfd int, path string, mode uint32) (err error)
63
64 func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
65 // Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
66 // and check the flags. Otherwise the mode would be applied to the symlink
67 // destination which is not what the user expects.
68 if flags&^AT_SYMLINK_NOFOLLOW != 0 {
69 return EINVAL
70 } else if flags&AT_SYMLINK_NOFOLLOW != 0 {
71 return EOPNOTSUPP
72 }
73 return fchmodat(dirfd, path, mode)
74 }
75
76 func InotifyInit() (fd int, err error) {
77 return InotifyInit1(0)
78 }
79
80 //sys ioctl(fd int, req uint, arg uintptr) (err error) = SYS_IOCTL
81 //sys ioctlPtr(fd int, req uint, arg unsafe.Pointer) (err error) = SYS_IOCTL
82
83 // ioctl itself should not be exposed directly, but additional get/set functions
84 // for specific types are permissible. These are defined in ioctl.go and
85 // ioctl_linux.go.
86 //
87 // The third argument to ioctl is often a pointer but sometimes an integer.
88 // Callers should use ioctlPtr when the third argument is a pointer and ioctl
89 // when the third argument is an integer.
90 //
91 // TODO: some existing code incorrectly uses ioctl when it should use ioctlPtr.
92
93 //sys Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
94
95 func Link(oldpath string, newpath string) (err error) {
96 return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
97 }
98
99 func Mkdir(path string, mode uint32) (err error) {
100 return Mkdirat(AT_FDCWD, path, mode)
101 }
102
103 func Mknod(path string, mode uint32, dev int) (err error) {
104 return Mknodat(AT_FDCWD, path, mode, dev)
105 }
106
107 func Open(path string, mode int, perm uint32) (fd int, err error) {
108 return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
109 }
110
111 //sys openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
112
113 func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
114 return openat(dirfd, path, flags|O_LARGEFILE, mode)
115 }
116
117 //sys openat2(dirfd int, path string, open_how *OpenHow, size int) (fd int, err error)
118
119 func Openat2(dirfd int, path string, how *OpenHow) (fd int, err error) {
120 return openat2(dirfd, path, how, SizeofOpenHow)
121 }
122
123 func Pipe(p []int) error {
124 return Pipe2(p, 0)
125 }
126
127 //sysnb pipe2(p *[2]_C_int, flags int) (err error)
128
129 func Pipe2(p []int, flags int) error {
130 if len(p) != 2 {
131 return EINVAL
132 }
133 var pp [2]_C_int
134 err := pipe2(&pp, flags)
135 if err == nil {
136 p[0] = int(pp[0])
137 p[1] = int(pp[1])
138 }
139 return err
140 }
141
142 //sys ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
143
144 func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
145 if len(fds) == 0 {
146 return ppoll(nil, 0, timeout, sigmask)
147 }
148 return ppoll(&fds[0], len(fds), timeout, sigmask)
149 }
150
151 func Poll(fds []PollFd, timeout int) (n int, err error) {
152 var ts *Timespec
153 if timeout >= 0 {
154 ts = new(Timespec)
155 *ts = NsecToTimespec(int64(timeout) * 1e6)
156 }
157 return Ppoll(fds, ts, nil)
158 }
159
160 //sys Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
161
162 func Readlink(path string, buf []byte) (n int, err error) {
163 return Readlinkat(AT_FDCWD, path, buf)
164 }
165
166 func Rename(oldpath string, newpath string) (err error) {
167 return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
168 }
169
170 func Rmdir(path string) error {
171 return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
172 }
173
174 //sys Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
175
176 func Symlink(oldpath string, newpath string) (err error) {
177 return Symlinkat(oldpath, AT_FDCWD, newpath)
178 }
179
180 func Unlink(path string) error {
181 return Unlinkat(AT_FDCWD, path, 0)
182 }
183
184 //sys Unlinkat(dirfd int, path string, flags int) (err error)
185
186 func Utimes(path string, tv []Timeval) error {
187 if tv == nil {
188 err := utimensat(AT_FDCWD, path, nil, 0)
189 if err != ENOSYS {
190 return err
191 }
192 return utimes(path, nil)
193 }
194 if len(tv) != 2 {
195 return EINVAL
196 }
197 var ts [2]Timespec
198 ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
199 ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
200 err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
201 if err != ENOSYS {
202 return err
203 }
204 return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
205 }
206
207 //sys utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
208
209 func UtimesNano(path string, ts []Timespec) error {
210 return UtimesNanoAt(AT_FDCWD, path, ts, 0)
211 }
212
213 func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
214 if ts == nil {
215 return utimensat(dirfd, path, nil, flags)
216 }
217 if len(ts) != 2 {
218 return EINVAL
219 }
220 return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
221 }
222
223 func Futimesat(dirfd int, path string, tv []Timeval) error {
224 if tv == nil {
225 return futimesat(dirfd, path, nil)
226 }
227 if len(tv) != 2 {
228 return EINVAL
229 }
230 return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
231 }
232
233 func Futimes(fd int, tv []Timeval) (err error) {
234 // Believe it or not, this is the best we can do on Linux
235 // (and is what glibc does).
236 return Utimes("/proc/self/fd/"+itoa(fd), tv)
237 }
238
239 const ImplementsGetwd = true
240
241 //sys Getcwd(buf []byte) (n int, err error)
242
243 func Getwd() (wd string, err error) {
244 var buf [PathMax]byte
245 n, err := Getcwd(buf[0:])
246 if err != nil {
247 return "", err
248 }
249 // Getcwd returns the number of bytes written to buf, including the NUL.
250 if n < 1 || n > len(buf) || buf[n-1] != 0 {
251 return "", EINVAL
252 }
253 // In some cases, Linux can return a path that starts with the
254 // "(unreachable)" prefix, which can potentially be a valid relative
255 // path. To work around that, return ENOENT if path is not absolute.
256 if buf[0] != '/' {
257 return "", ENOENT
258 }
259
260 return string(buf[0 : n-1]), nil
261 }
262
263 func Getgroups() (gids []int, err error) {
264 n, err := getgroups(0, nil)
265 if err != nil {
266 return nil, err
267 }
268 if n == 0 {
269 return nil, nil
270 }
271
272 // Sanity check group count. Max is 1<<16 on Linux.
273 if n < 0 || n > 1<<20 {
274 return nil, EINVAL
275 }
276
277 a := make([]_Gid_t, n)
278 n, err = getgroups(n, &a[0])
279 if err != nil {
280 return nil, err
281 }
282 gids = make([]int, n)
283 for i, v := range a[0:n] {
284 gids[i] = int(v)
285 }
286 return
287 }
288
289 func Setgroups(gids []int) (err error) {
290 if len(gids) == 0 {
291 return setgroups(0, nil)
292 }
293
294 a := make([]_Gid_t, len(gids))
295 for i, v := range gids {
296 a[i] = _Gid_t(v)
297 }
298 return setgroups(len(a), &a[0])
299 }
300
301 type WaitStatus uint32
302
303 // Wait status is 7 bits at bottom, either 0 (exited),
304 // 0x7F (stopped), or a signal number that caused an exit.
305 // The 0x80 bit is whether there was a core dump.
306 // An extra number (exit code, signal causing a stop)
307 // is in the high bits. At least that's the idea.
308 // There are various irregularities. For example, the
309 // "continued" status is 0xFFFF, distinguishing itself
310 // from stopped via the core dump bit.
311
312 const (
313 mask = 0x7F
314 core = 0x80
315 exited = 0x00
316 stopped = 0x7F
317 shift = 8
318 )
319
320 func (w WaitStatus) Exited() bool { return w&mask == exited }
321
322 func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
323
324 func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
325
326 func (w WaitStatus) Continued() bool { return w == 0xFFFF }
327
328 func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
329
330 func (w WaitStatus) ExitStatus() int {
331 if !w.Exited() {
332 return -1
333 }
334 return int(w>>shift) & 0xFF
335 }
336
337 func (w WaitStatus) Signal() syscall.Signal {
338 if !w.Signaled() {
339 return -1
340 }
341 return syscall.Signal(w & mask)
342 }
343
344 func (w WaitStatus) StopSignal() syscall.Signal {
345 if !w.Stopped() {
346 return -1
347 }
348 return syscall.Signal(w>>shift) & 0xFF
349 }
350
351 func (w WaitStatus) TrapCause() int {
352 if w.StopSignal() != SIGTRAP {
353 return -1
354 }
355 return int(w>>shift) >> 8
356 }
357
358 //sys wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
359
360 func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
361 var status _C_int
362 wpid, err = wait4(pid, &status, options, rusage)
363 if wstatus != nil {
364 *wstatus = WaitStatus(status)
365 }
366 return
367 }
368
369 //sys Waitid(idType int, id int, info *Siginfo, options int, rusage *Rusage) (err error)
370
371 func Mkfifo(path string, mode uint32) error {
372 return Mknod(path, mode|S_IFIFO, 0)
373 }
374
375 func Mkfifoat(dirfd int, path string, mode uint32) error {
376 return Mknodat(dirfd, path, mode|S_IFIFO, 0)
377 }
378
379 func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
380 if sa.Port < 0 || sa.Port > 0xFFFF {
381 return nil, 0, EINVAL
382 }
383 sa.raw.Family = AF_INET
384 p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
385 p[0] = byte(sa.Port >> 8)
386 p[1] = byte(sa.Port)
387 sa.raw.Addr = sa.Addr
388 return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
389 }
390
391 func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
392 if sa.Port < 0 || sa.Port > 0xFFFF {
393 return nil, 0, EINVAL
394 }
395 sa.raw.Family = AF_INET6
396 p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
397 p[0] = byte(sa.Port >> 8)
398 p[1] = byte(sa.Port)
399 sa.raw.Scope_id = sa.ZoneId
400 sa.raw.Addr = sa.Addr
401 return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
402 }
403
404 func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
405 name := sa.Name
406 n := len(name)
407 if n >= len(sa.raw.Path) {
408 return nil, 0, EINVAL
409 }
410 sa.raw.Family = AF_UNIX
411 for i := 0; i < n; i++ {
412 sa.raw.Path[i] = int8(name[i])
413 }
414 // length is family (uint16), name, NUL.
415 sl := _Socklen(2)
416 if n > 0 {
417 sl += _Socklen(n) + 1
418 }
419 if sa.raw.Path[0] == '@' {
420 sa.raw.Path[0] = 0
421 // Don't count trailing NUL for abstract address.
422 sl--
423 }
424
425 return unsafe.Pointer(&sa.raw), sl, nil
426 }
427
428 // SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
429 type SockaddrLinklayer struct {
430 Protocol uint16
431 Ifindex int
432 Hatype uint16
433 Pkttype uint8
434 Halen uint8
435 Addr [8]byte
436 raw RawSockaddrLinklayer
437 }
438
439 func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
440 if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
441 return nil, 0, EINVAL
442 }
443 sa.raw.Family = AF_PACKET
444 sa.raw.Protocol = sa.Protocol
445 sa.raw.Ifindex = int32(sa.Ifindex)
446 sa.raw.Hatype = sa.Hatype
447 sa.raw.Pkttype = sa.Pkttype
448 sa.raw.Halen = sa.Halen
449 sa.raw.Addr = sa.Addr
450 return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
451 }
452
453 // SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
454 type SockaddrNetlink struct {
455 Family uint16
456 Pad uint16
457 Pid uint32
458 Groups uint32
459 raw RawSockaddrNetlink
460 }
461
462 func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
463 sa.raw.Family = AF_NETLINK
464 sa.raw.Pad = sa.Pad
465 sa.raw.Pid = sa.Pid
466 sa.raw.Groups = sa.Groups
467 return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
468 }
469
470 // SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
471 // using the HCI protocol.
472 type SockaddrHCI struct {
473 Dev uint16
474 Channel uint16
475 raw RawSockaddrHCI
476 }
477
478 func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
479 sa.raw.Family = AF_BLUETOOTH
480 sa.raw.Dev = sa.Dev
481 sa.raw.Channel = sa.Channel
482 return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
483 }
484
485 // SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
486 // using the L2CAP protocol.
487 type SockaddrL2 struct {
488 PSM uint16
489 CID uint16
490 Addr [6]uint8
491 AddrType uint8
492 raw RawSockaddrL2
493 }
494
495 func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
496 sa.raw.Family = AF_BLUETOOTH
497 psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
498 psm[0] = byte(sa.PSM)
499 psm[1] = byte(sa.PSM >> 8)
500 for i := 0; i < len(sa.Addr); i++ {
501 sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
502 }
503 cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
504 cid[0] = byte(sa.CID)
505 cid[1] = byte(sa.CID >> 8)
506 sa.raw.Bdaddr_type = sa.AddrType
507 return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
508 }
509
510 // SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
511 // using the RFCOMM protocol.
512 //
513 // Server example:
514 //
515 // fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
516 // _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
517 // Channel: 1,
518 // Addr: [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
519 // })
520 // _ = Listen(fd, 1)
521 // nfd, sa, _ := Accept(fd)
522 // fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
523 // Read(nfd, buf)
524 //
525 // Client example:
526 //
527 // fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
528 // _ = Connect(fd, &SockaddrRFCOMM{
529 // Channel: 1,
530 // Addr: [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
531 // })
532 // Write(fd, []byte(`hello`))
533 type SockaddrRFCOMM struct {
534 // Addr represents a bluetooth address, byte ordering is little-endian.
535 Addr [6]uint8
536
537 // Channel is a designated bluetooth channel, only 1-30 are available for use.
538 // Since Linux 2.6.7 and further zero value is the first available channel.
539 Channel uint8
540
541 raw RawSockaddrRFCOMM
542 }
543
544 func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) {
545 sa.raw.Family = AF_BLUETOOTH
546 sa.raw.Channel = sa.Channel
547 sa.raw.Bdaddr = sa.Addr
548 return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil
549 }
550
551 // SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
552 // The RxID and TxID fields are used for transport protocol addressing in
553 // (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
554 // zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
555 //
556 // The SockaddrCAN struct must be bound to the socket file descriptor
557 // using Bind before the CAN socket can be used.
558 //
559 // // Read one raw CAN frame
560 // fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
561 // addr := &SockaddrCAN{Ifindex: index}
562 // Bind(fd, addr)
563 // frame := make([]byte, 16)
564 // Read(fd, frame)
565 //
566 // The full SocketCAN documentation can be found in the linux kernel
567 // archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
568 type SockaddrCAN struct {
569 Ifindex int
570 RxID uint32
571 TxID uint32
572 raw RawSockaddrCAN
573 }
574
575 func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
576 if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
577 return nil, 0, EINVAL
578 }
579 sa.raw.Family = AF_CAN
580 sa.raw.Ifindex = int32(sa.Ifindex)
581 rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
582 for i := 0; i < 4; i++ {
583 sa.raw.Addr[i] = rx[i]
584 }
585 tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
586 for i := 0; i < 4; i++ {
587 sa.raw.Addr[i+4] = tx[i]
588 }
589 return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
590 }
591
592 // SockaddrCANJ1939 implements the Sockaddr interface for AF_CAN using J1939
593 // protocol (https://en.wikipedia.org/wiki/SAE_J1939). For more information
594 // on the purposes of the fields, check the official linux kernel documentation
595 // available here: https://www.kernel.org/doc/Documentation/networking/j1939.rst
596 type SockaddrCANJ1939 struct {
597 Ifindex int
598 Name uint64
599 PGN uint32
600 Addr uint8
601 raw RawSockaddrCAN
602 }
603
604 func (sa *SockaddrCANJ1939) sockaddr() (unsafe.Pointer, _Socklen, error) {
605 if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
606 return nil, 0, EINVAL
607 }
608 sa.raw.Family = AF_CAN
609 sa.raw.Ifindex = int32(sa.Ifindex)
610 n := (*[8]byte)(unsafe.Pointer(&sa.Name))
611 for i := 0; i < 8; i++ {
612 sa.raw.Addr[i] = n[i]
613 }
614 p := (*[4]byte)(unsafe.Pointer(&sa.PGN))
615 for i := 0; i < 4; i++ {
616 sa.raw.Addr[i+8] = p[i]
617 }
618 sa.raw.Addr[12] = sa.Addr
619 return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
620 }
621
622 // SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
623 // SockaddrALG enables userspace access to the Linux kernel's cryptography
624 // subsystem. The Type and Name fields specify which type of hash or cipher
625 // should be used with a given socket.
626 //
627 // To create a file descriptor that provides access to a hash or cipher, both
628 // Bind and Accept must be used. Once the setup process is complete, input
629 // data can be written to the socket, processed by the kernel, and then read
630 // back as hash output or ciphertext.
631 //
632 // Here is an example of using an AF_ALG socket with SHA1 hashing.
633 // The initial socket setup process is as follows:
634 //
635 // // Open a socket to perform SHA1 hashing.
636 // fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
637 // addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
638 // unix.Bind(fd, addr)
639 // // Note: unix.Accept does not work at this time; must invoke accept()
640 // // manually using unix.Syscall.
641 // hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
642 //
643 // Once a file descriptor has been returned from Accept, it may be used to
644 // perform SHA1 hashing. The descriptor is not safe for concurrent use, but
645 // may be re-used repeatedly with subsequent Write and Read operations.
646 //
647 // When hashing a small byte slice or string, a single Write and Read may
648 // be used:
649 //
650 // // Assume hashfd is already configured using the setup process.
651 // hash := os.NewFile(hashfd, "sha1")
652 // // Hash an input string and read the results. Each Write discards
653 // // previous hash state. Read always reads the current state.
654 // b := make([]byte, 20)
655 // for i := 0; i < 2; i++ {
656 // io.WriteString(hash, "Hello, world.")
657 // hash.Read(b)
658 // fmt.Println(hex.EncodeToString(b))
659 // }
660 // // Output:
661 // // 2ae01472317d1935a84797ec1983ae243fc6aa28
662 // // 2ae01472317d1935a84797ec1983ae243fc6aa28
663 //
664 // For hashing larger byte slices, or byte streams such as those read from
665 // a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
666 // the hash digest instead of creating a new one for a given chunk and finalizing it.
667 //
668 // // Assume hashfd and addr are already configured using the setup process.
669 // hash := os.NewFile(hashfd, "sha1")
670 // // Hash the contents of a file.
671 // f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
672 // b := make([]byte, 4096)
673 // for {
674 // n, err := f.Read(b)
675 // if err == io.EOF {
676 // break
677 // }
678 // unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
679 // }
680 // hash.Read(b)
681 // fmt.Println(hex.EncodeToString(b))
682 // // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
683 //
684 // For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
685 type SockaddrALG struct {
686 Type string
687 Name string
688 Feature uint32
689 Mask uint32
690 raw RawSockaddrALG
691 }
692
693 func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
694 // Leave room for NUL byte terminator.
695 if len(sa.Type) > 13 {
696 return nil, 0, EINVAL
697 }
698 if len(sa.Name) > 63 {
699 return nil, 0, EINVAL
700 }
701
702 sa.raw.Family = AF_ALG
703 sa.raw.Feat = sa.Feature
704 sa.raw.Mask = sa.Mask
705
706 typ, err := ByteSliceFromString(sa.Type)
707 if err != nil {
708 return nil, 0, err
709 }
710 name, err := ByteSliceFromString(sa.Name)
711 if err != nil {
712 return nil, 0, err
713 }
714
715 copy(sa.raw.Type[:], typ)
716 copy(sa.raw.Name[:], name)
717
718 return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
719 }
720
721 // SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
722 // SockaddrVM provides access to Linux VM sockets: a mechanism that enables
723 // bidirectional communication between a hypervisor and its guest virtual
724 // machines.
725 type SockaddrVM struct {
726 // CID and Port specify a context ID and port address for a VM socket.
727 // Guests have a unique CID, and hosts may have a well-known CID of:
728 // - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
729 // - VMADDR_CID_LOCAL: refers to local communication (loopback).
730 // - VMADDR_CID_HOST: refers to other processes on the host.
731 CID uint32
732 Port uint32
733 Flags uint8
734 raw RawSockaddrVM
735 }
736
737 func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
738 sa.raw.Family = AF_VSOCK
739 sa.raw.Port = sa.Port
740 sa.raw.Cid = sa.CID
741 sa.raw.Flags = sa.Flags
742
743 return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
744 }
745
746 type SockaddrXDP struct {
747 Flags uint16
748 Ifindex uint32
749 QueueID uint32
750 SharedUmemFD uint32
751 raw RawSockaddrXDP
752 }
753
754 func (sa *SockaddrXDP) sockaddr() (unsafe.Pointer, _Socklen, error) {
755 sa.raw.Family = AF_XDP
756 sa.raw.Flags = sa.Flags
757 sa.raw.Ifindex = sa.Ifindex
758 sa.raw.Queue_id = sa.QueueID
759 sa.raw.Shared_umem_fd = sa.SharedUmemFD
760
761 return unsafe.Pointer(&sa.raw), SizeofSockaddrXDP, nil
762 }
763
764 // This constant mirrors the #define of PX_PROTO_OE in
765 // linux/if_pppox.h. We're defining this by hand here instead of
766 // autogenerating through mkerrors.sh because including
767 // linux/if_pppox.h causes some declaration conflicts with other
768 // includes (linux/if_pppox.h includes linux/in.h, which conflicts
769 // with netinet/in.h). Given that we only need a single zero constant
770 // out of that file, it's cleaner to just define it by hand here.
771 const px_proto_oe = 0
772
773 type SockaddrPPPoE struct {
774 SID uint16
775 Remote []byte
776 Dev string
777 raw RawSockaddrPPPoX
778 }
779
780 func (sa *SockaddrPPPoE) sockaddr() (unsafe.Pointer, _Socklen, error) {
781 if len(sa.Remote) != 6 {
782 return nil, 0, EINVAL
783 }
784 if len(sa.Dev) > IFNAMSIZ-1 {
785 return nil, 0, EINVAL
786 }
787
788 *(*uint16)(unsafe.Pointer(&sa.raw[0])) = AF_PPPOX
789 // This next field is in host-endian byte order. We can't use the
790 // same unsafe pointer cast as above, because this value is not
791 // 32-bit aligned and some architectures don't allow unaligned
792 // access.
793 //
794 // However, the value of px_proto_oe is 0, so we can use
795 // encoding/binary helpers to write the bytes without worrying
796 // about the ordering.
797 binary.BigEndian.PutUint32(sa.raw[2:6], px_proto_oe)
798 // This field is deliberately big-endian, unlike the previous
799 // one. The kernel expects SID to be in network byte order.
800 binary.BigEndian.PutUint16(sa.raw[6:8], sa.SID)
801 copy(sa.raw[8:14], sa.Remote)
802 for i := 14; i < 14+IFNAMSIZ; i++ {
803 sa.raw[i] = 0
804 }
805 copy(sa.raw[14:], sa.Dev)
806 return unsafe.Pointer(&sa.raw), SizeofSockaddrPPPoX, nil
807 }
808
809 // SockaddrTIPC implements the Sockaddr interface for AF_TIPC type sockets.
810 // For more information on TIPC, see: http://tipc.sourceforge.net/.
811 type SockaddrTIPC struct {
812 // Scope is the publication scopes when binding service/service range.
813 // Should be set to TIPC_CLUSTER_SCOPE or TIPC_NODE_SCOPE.
814 Scope int
815
816 // Addr is the type of address used to manipulate a socket. Addr must be
817 // one of:
818 // - *TIPCSocketAddr: "id" variant in the C addr union
819 // - *TIPCServiceRange: "nameseq" variant in the C addr union
820 // - *TIPCServiceName: "name" variant in the C addr union
821 //
822 // If nil, EINVAL will be returned when the structure is used.
823 Addr TIPCAddr
824
825 raw RawSockaddrTIPC
826 }
827
828 // TIPCAddr is implemented by types that can be used as an address for
829 // SockaddrTIPC. It is only implemented by *TIPCSocketAddr, *TIPCServiceRange,
830 // and *TIPCServiceName.
831 type TIPCAddr interface {
832 tipcAddrtype() uint8
833 tipcAddr() [12]byte
834 }
835
836 func (sa *TIPCSocketAddr) tipcAddr() [12]byte {
837 var out [12]byte
838 copy(out[:], (*(*[unsafe.Sizeof(TIPCSocketAddr{})]byte)(unsafe.Pointer(sa)))[:])
839 return out
840 }
841
842 func (sa *TIPCSocketAddr) tipcAddrtype() uint8 { return TIPC_SOCKET_ADDR }
843
844 func (sa *TIPCServiceRange) tipcAddr() [12]byte {
845 var out [12]byte
846 copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceRange{})]byte)(unsafe.Pointer(sa)))[:])
847 return out
848 }
849
850 func (sa *TIPCServiceRange) tipcAddrtype() uint8 { return TIPC_SERVICE_RANGE }
851
852 func (sa *TIPCServiceName) tipcAddr() [12]byte {
853 var out [12]byte
854 copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceName{})]byte)(unsafe.Pointer(sa)))[:])
855 return out
856 }
857
858 func (sa *TIPCServiceName) tipcAddrtype() uint8 { return TIPC_SERVICE_ADDR }
859
860 func (sa *SockaddrTIPC) sockaddr() (unsafe.Pointer, _Socklen, error) {
861 if sa.Addr == nil {
862 return nil, 0, EINVAL
863 }
864 sa.raw.Family = AF_TIPC
865 sa.raw.Scope = int8(sa.Scope)
866 sa.raw.Addrtype = sa.Addr.tipcAddrtype()
867 sa.raw.Addr = sa.Addr.tipcAddr()
868 return unsafe.Pointer(&sa.raw), SizeofSockaddrTIPC, nil
869 }
870
871 // SockaddrL2TPIP implements the Sockaddr interface for IPPROTO_L2TP/AF_INET sockets.
872 type SockaddrL2TPIP struct {
873 Addr [4]byte
874 ConnId uint32
875 raw RawSockaddrL2TPIP
876 }
877
878 func (sa *SockaddrL2TPIP) sockaddr() (unsafe.Pointer, _Socklen, error) {
879 sa.raw.Family = AF_INET
880 sa.raw.Conn_id = sa.ConnId
881 sa.raw.Addr = sa.Addr
882 return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP, nil
883 }
884
885 // SockaddrL2TPIP6 implements the Sockaddr interface for IPPROTO_L2TP/AF_INET6 sockets.
886 type SockaddrL2TPIP6 struct {
887 Addr [16]byte
888 ZoneId uint32
889 ConnId uint32
890 raw RawSockaddrL2TPIP6
891 }
892
893 func (sa *SockaddrL2TPIP6) sockaddr() (unsafe.Pointer, _Socklen, error) {
894 sa.raw.Family = AF_INET6
895 sa.raw.Conn_id = sa.ConnId
896 sa.raw.Scope_id = sa.ZoneId
897 sa.raw.Addr = sa.Addr
898 return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP6, nil
899 }
900
901 // SockaddrIUCV implements the Sockaddr interface for AF_IUCV sockets.
902 type SockaddrIUCV struct {
903 UserID string
904 Name string
905 raw RawSockaddrIUCV
906 }
907
908 func (sa *SockaddrIUCV) sockaddr() (unsafe.Pointer, _Socklen, error) {
909 sa.raw.Family = AF_IUCV
910 // These are EBCDIC encoded by the kernel, but we still need to pad them
911 // with blanks. Initializing with blanks allows the caller to feed in either
912 // a padded or an unpadded string.
913 for i := 0; i < 8; i++ {
914 sa.raw.Nodeid[i] = ' '
915 sa.raw.User_id[i] = ' '
916 sa.raw.Name[i] = ' '
917 }
918 if len(sa.UserID) > 8 || len(sa.Name) > 8 {
919 return nil, 0, EINVAL
920 }
921 for i, b := range []byte(sa.UserID[:]) {
922 sa.raw.User_id[i] = int8(b)
923 }
924 for i, b := range []byte(sa.Name[:]) {
925 sa.raw.Name[i] = int8(b)
926 }
927 return unsafe.Pointer(&sa.raw), SizeofSockaddrIUCV, nil
928 }
929
930 type SockaddrNFC struct {
931 DeviceIdx uint32
932 TargetIdx uint32
933 NFCProtocol uint32
934 raw RawSockaddrNFC
935 }
936
937 func (sa *SockaddrNFC) sockaddr() (unsafe.Pointer, _Socklen, error) {
938 sa.raw.Sa_family = AF_NFC
939 sa.raw.Dev_idx = sa.DeviceIdx
940 sa.raw.Target_idx = sa.TargetIdx
941 sa.raw.Nfc_protocol = sa.NFCProtocol
942 return unsafe.Pointer(&sa.raw), SizeofSockaddrNFC, nil
943 }
944
945 type SockaddrNFCLLCP struct {
946 DeviceIdx uint32
947 TargetIdx uint32
948 NFCProtocol uint32
949 DestinationSAP uint8
950 SourceSAP uint8
951 ServiceName string
952 raw RawSockaddrNFCLLCP
953 }
954
955 func (sa *SockaddrNFCLLCP) sockaddr() (unsafe.Pointer, _Socklen, error) {
956 sa.raw.Sa_family = AF_NFC
957 sa.raw.Dev_idx = sa.DeviceIdx
958 sa.raw.Target_idx = sa.TargetIdx
959 sa.raw.Nfc_protocol = sa.NFCProtocol
960 sa.raw.Dsap = sa.DestinationSAP
961 sa.raw.Ssap = sa.SourceSAP
962 if len(sa.ServiceName) > len(sa.raw.Service_name) {
963 return nil, 0, EINVAL
964 }
965 copy(sa.raw.Service_name[:], sa.ServiceName)
966 sa.raw.SetServiceNameLen(len(sa.ServiceName))
967 return unsafe.Pointer(&sa.raw), SizeofSockaddrNFCLLCP, nil
968 }
969
970 var socketProtocol = func(fd int) (int, error) {
971 return GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
972 }
973
974 func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
975 switch rsa.Addr.Family {
976 case AF_NETLINK:
977 pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
978 sa := new(SockaddrNetlink)
979 sa.Family = pp.Family
980 sa.Pad = pp.Pad
981 sa.Pid = pp.Pid
982 sa.Groups = pp.Groups
983 return sa, nil
984
985 case AF_PACKET:
986 pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
987 sa := new(SockaddrLinklayer)
988 sa.Protocol = pp.Protocol
989 sa.Ifindex = int(pp.Ifindex)
990 sa.Hatype = pp.Hatype
991 sa.Pkttype = pp.Pkttype
992 sa.Halen = pp.Halen
993 sa.Addr = pp.Addr
994 return sa, nil
995
996 case AF_UNIX:
997 pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
998 sa := new(SockaddrUnix)
999 if pp.Path[0] == 0 {
1000 // "Abstract" Unix domain socket.
1001 // Rewrite leading NUL as @ for textual display.
1002 // (This is the standard convention.)
1003 // Not friendly to overwrite in place,
1004 // but the callers below don't care.
1005 pp.Path[0] = '@'
1006 }
1007
1008 // Assume path ends at NUL.
1009 // This is not technically the Linux semantics for
1010 // abstract Unix domain sockets--they are supposed
1011 // to be uninterpreted fixed-size binary blobs--but
1012 // everyone uses this convention.
1013 n := 0
1014 for n < len(pp.Path) && pp.Path[n] != 0 {
1015 n++
1016 }
1017 bytes := (*[len(pp.Path)]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
1018 sa.Name = string(bytes)
1019 return sa, nil
1020
1021 case AF_INET:
1022 proto, err := socketProtocol(fd)
1023 if err != nil {
1024 return nil, err
1025 }
1026
1027 switch proto {
1028 case IPPROTO_L2TP:
1029 pp := (*RawSockaddrL2TPIP)(unsafe.Pointer(rsa))
1030 sa := new(SockaddrL2TPIP)
1031 sa.ConnId = pp.Conn_id
1032 sa.Addr = pp.Addr
1033 return sa, nil
1034 default:
1035 pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
1036 sa := new(SockaddrInet4)
1037 p := (*[2]byte)(unsafe.Pointer(&pp.Port))
1038 sa.Port = int(p[0])<<8 + int(p[1])
1039 sa.Addr = pp.Addr
1040 return sa, nil
1041 }
1042
1043 case AF_INET6:
1044 proto, err := socketProtocol(fd)
1045 if err != nil {
1046 return nil, err
1047 }
1048
1049 switch proto {
1050 case IPPROTO_L2TP:
1051 pp := (*RawSockaddrL2TPIP6)(unsafe.Pointer(rsa))
1052 sa := new(SockaddrL2TPIP6)
1053 sa.ConnId = pp.Conn_id
1054 sa.ZoneId = pp.Scope_id
1055 sa.Addr = pp.Addr
1056 return sa, nil
1057 default:
1058 pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
1059 sa := new(SockaddrInet6)
1060 p := (*[2]byte)(unsafe.Pointer(&pp.Port))
1061 sa.Port = int(p[0])<<8 + int(p[1])
1062 sa.ZoneId = pp.Scope_id
1063 sa.Addr = pp.Addr
1064 return sa, nil
1065 }
1066
1067 case AF_VSOCK:
1068 pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
1069 sa := &SockaddrVM{
1070 CID: pp.Cid,
1071 Port: pp.Port,
1072 Flags: pp.Flags,
1073 }
1074 return sa, nil
1075 case AF_BLUETOOTH:
1076 proto, err := socketProtocol(fd)
1077 if err != nil {
1078 return nil, err
1079 }
1080 // only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
1081 switch proto {
1082 case BTPROTO_L2CAP:
1083 pp := (*RawSockaddrL2)(unsafe.Pointer(rsa))
1084 sa := &SockaddrL2{
1085 PSM: pp.Psm,
1086 CID: pp.Cid,
1087 Addr: pp.Bdaddr,
1088 AddrType: pp.Bdaddr_type,
1089 }
1090 return sa, nil
1091 case BTPROTO_RFCOMM:
1092 pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa))
1093 sa := &SockaddrRFCOMM{
1094 Channel: pp.Channel,
1095 Addr: pp.Bdaddr,
1096 }
1097 return sa, nil
1098 }
1099 case AF_XDP:
1100 pp := (*RawSockaddrXDP)(unsafe.Pointer(rsa))
1101 sa := &SockaddrXDP{
1102 Flags: pp.Flags,
1103 Ifindex: pp.Ifindex,
1104 QueueID: pp.Queue_id,
1105 SharedUmemFD: pp.Shared_umem_fd,
1106 }
1107 return sa, nil
1108 case AF_PPPOX:
1109 pp := (*RawSockaddrPPPoX)(unsafe.Pointer(rsa))
1110 if binary.BigEndian.Uint32(pp[2:6]) != px_proto_oe {
1111 return nil, EINVAL
1112 }
1113 sa := &SockaddrPPPoE{
1114 SID: binary.BigEndian.Uint16(pp[6:8]),
1115 Remote: pp[8:14],
1116 }
1117 for i := 14; i < 14+IFNAMSIZ; i++ {
1118 if pp[i] == 0 {
1119 sa.Dev = string(pp[14:i])
1120 break
1121 }
1122 }
1123 return sa, nil
1124 case AF_TIPC:
1125 pp := (*RawSockaddrTIPC)(unsafe.Pointer(rsa))
1126
1127 sa := &SockaddrTIPC{
1128 Scope: int(pp.Scope),
1129 }
1130
1131 // Determine which union variant is present in pp.Addr by checking
1132 // pp.Addrtype.
1133 switch pp.Addrtype {
1134 case TIPC_SERVICE_RANGE:
1135 sa.Addr = (*TIPCServiceRange)(unsafe.Pointer(&pp.Addr))
1136 case TIPC_SERVICE_ADDR:
1137 sa.Addr = (*TIPCServiceName)(unsafe.Pointer(&pp.Addr))
1138 case TIPC_SOCKET_ADDR:
1139 sa.Addr = (*TIPCSocketAddr)(unsafe.Pointer(&pp.Addr))
1140 default:
1141 return nil, EINVAL
1142 }
1143
1144 return sa, nil
1145 case AF_IUCV:
1146 pp := (*RawSockaddrIUCV)(unsafe.Pointer(rsa))
1147
1148 var user [8]byte
1149 var name [8]byte
1150
1151 for i := 0; i < 8; i++ {
1152 user[i] = byte(pp.User_id[i])
1153 name[i] = byte(pp.Name[i])
1154 }
1155
1156 sa := &SockaddrIUCV{
1157 UserID: string(user[:]),
1158 Name: string(name[:]),
1159 }
1160 return sa, nil
1161
1162 case AF_CAN:
1163 proto, err := socketProtocol(fd)
1164 if err != nil {
1165 return nil, err
1166 }
1167
1168 pp := (*RawSockaddrCAN)(unsafe.Pointer(rsa))
1169
1170 switch proto {
1171 case CAN_J1939:
1172 sa := &SockaddrCANJ1939{
1173 Ifindex: int(pp.Ifindex),
1174 }
1175 name := (*[8]byte)(unsafe.Pointer(&sa.Name))
1176 for i := 0; i < 8; i++ {
1177 name[i] = pp.Addr[i]
1178 }
1179 pgn := (*[4]byte)(unsafe.Pointer(&sa.PGN))
1180 for i := 0; i < 4; i++ {
1181 pgn[i] = pp.Addr[i+8]
1182 }
1183 addr := (*[1]byte)(unsafe.Pointer(&sa.Addr))
1184 addr[0] = pp.Addr[12]
1185 return sa, nil
1186 default:
1187 sa := &SockaddrCAN{
1188 Ifindex: int(pp.Ifindex),
1189 }
1190 rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
1191 for i := 0; i < 4; i++ {
1192 rx[i] = pp.Addr[i]
1193 }
1194 tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
1195 for i := 0; i < 4; i++ {
1196 tx[i] = pp.Addr[i+4]
1197 }
1198 return sa, nil
1199 }
1200 case AF_NFC:
1201 proto, err := socketProtocol(fd)
1202 if err != nil {
1203 return nil, err
1204 }
1205 switch proto {
1206 case NFC_SOCKPROTO_RAW:
1207 pp := (*RawSockaddrNFC)(unsafe.Pointer(rsa))
1208 sa := &SockaddrNFC{
1209 DeviceIdx: pp.Dev_idx,
1210 TargetIdx: pp.Target_idx,
1211 NFCProtocol: pp.Nfc_protocol,
1212 }
1213 return sa, nil
1214 case NFC_SOCKPROTO_LLCP:
1215 pp := (*RawSockaddrNFCLLCP)(unsafe.Pointer(rsa))
1216 if uint64(pp.Service_name_len) > uint64(len(pp.Service_name)) {
1217 return nil, EINVAL
1218 }
1219 sa := &SockaddrNFCLLCP{
1220 DeviceIdx: pp.Dev_idx,
1221 TargetIdx: pp.Target_idx,
1222 NFCProtocol: pp.Nfc_protocol,
1223 DestinationSAP: pp.Dsap,
1224 SourceSAP: pp.Ssap,
1225 ServiceName: string(pp.Service_name[:pp.Service_name_len]),
1226 }
1227 return sa, nil
1228 default:
1229 return nil, EINVAL
1230 }
1231 }
1232 return nil, EAFNOSUPPORT
1233 }
1234
1235 func Accept(fd int) (nfd int, sa Sockaddr, err error) {
1236 var rsa RawSockaddrAny
1237 var len _Socklen = SizeofSockaddrAny
1238 nfd, err = accept4(fd, &rsa, &len, 0)
1239 if err != nil {
1240 return
1241 }
1242 sa, err = anyToSockaddr(fd, &rsa)
1243 if err != nil {
1244 Close(nfd)
1245 nfd = 0
1246 }
1247 return
1248 }
1249
1250 func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
1251 var rsa RawSockaddrAny
1252 var len _Socklen = SizeofSockaddrAny
1253 nfd, err = accept4(fd, &rsa, &len, flags)
1254 if err != nil {
1255 return
1256 }
1257 if len > SizeofSockaddrAny {
1258 panic("RawSockaddrAny too small")
1259 }
1260 sa, err = anyToSockaddr(fd, &rsa)
1261 if err != nil {
1262 Close(nfd)
1263 nfd = 0
1264 }
1265 return
1266 }
1267
1268 func Getsockname(fd int) (sa Sockaddr, err error) {
1269 var rsa RawSockaddrAny
1270 var len _Socklen = SizeofSockaddrAny
1271 if err = getsockname(fd, &rsa, &len); err != nil {
1272 return
1273 }
1274 return anyToSockaddr(fd, &rsa)
1275 }
1276
1277 func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
1278 var value IPMreqn
1279 vallen := _Socklen(SizeofIPMreqn)
1280 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1281 return &value, err
1282 }
1283
1284 func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
1285 var value Ucred
1286 vallen := _Socklen(SizeofUcred)
1287 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1288 return &value, err
1289 }
1290
1291 func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
1292 var value TCPInfo
1293 vallen := _Socklen(SizeofTCPInfo)
1294 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1295 return &value, err
1296 }
1297
1298 // GetsockoptString returns the string value of the socket option opt for the
1299 // socket associated with fd at the given socket level.
1300 func GetsockoptString(fd, level, opt int) (string, error) {
1301 buf := make([]byte, 256)
1302 vallen := _Socklen(len(buf))
1303 err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
1304 if err != nil {
1305 if err == ERANGE {
1306 buf = make([]byte, vallen)
1307 err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
1308 }
1309 if err != nil {
1310 return "", err
1311 }
1312 }
1313 return string(buf[:vallen-1]), nil
1314 }
1315
1316 func GetsockoptTpacketStats(fd, level, opt int) (*TpacketStats, error) {
1317 var value TpacketStats
1318 vallen := _Socklen(SizeofTpacketStats)
1319 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1320 return &value, err
1321 }
1322
1323 func GetsockoptTpacketStatsV3(fd, level, opt int) (*TpacketStatsV3, error) {
1324 var value TpacketStatsV3
1325 vallen := _Socklen(SizeofTpacketStatsV3)
1326 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1327 return &value, err
1328 }
1329
1330 func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
1331 return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
1332 }
1333
1334 func SetsockoptPacketMreq(fd, level, opt int, mreq *PacketMreq) error {
1335 return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
1336 }
1337
1338 // SetsockoptSockFprog attaches a classic BPF or an extended BPF program to a
1339 // socket to filter incoming packets. See 'man 7 socket' for usage information.
1340 func SetsockoptSockFprog(fd, level, opt int, fprog *SockFprog) error {
1341 return setsockopt(fd, level, opt, unsafe.Pointer(fprog), unsafe.Sizeof(*fprog))
1342 }
1343
1344 func SetsockoptCanRawFilter(fd, level, opt int, filter []CanFilter) error {
1345 var p unsafe.Pointer
1346 if len(filter) > 0 {
1347 p = unsafe.Pointer(&filter[0])
1348 }
1349 return setsockopt(fd, level, opt, p, uintptr(len(filter)*SizeofCanFilter))
1350 }
1351
1352 func SetsockoptTpacketReq(fd, level, opt int, tp *TpacketReq) error {
1353 return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
1354 }
1355
1356 func SetsockoptTpacketReq3(fd, level, opt int, tp *TpacketReq3) error {
1357 return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
1358 }
1359
1360 func SetsockoptTCPRepairOpt(fd, level, opt int, o []TCPRepairOpt) (err error) {
1361 if len(o) == 0 {
1362 return EINVAL
1363 }
1364 return setsockopt(fd, level, opt, unsafe.Pointer(&o[0]), uintptr(SizeofTCPRepairOpt*len(o)))
1365 }
1366
1367 // Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
1368
1369 // KeyctlInt calls keyctl commands in which each argument is an int.
1370 // These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
1371 // KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
1372 // KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
1373 // KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
1374 //sys KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
1375
1376 // KeyctlBuffer calls keyctl commands in which the third and fourth
1377 // arguments are a buffer and its length, respectively.
1378 // These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
1379 //sys KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
1380
1381 // KeyctlString calls keyctl commands which return a string.
1382 // These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
1383 func KeyctlString(cmd int, id int) (string, error) {
1384 // We must loop as the string data may change in between the syscalls.
1385 // We could allocate a large buffer here to reduce the chance that the
1386 // syscall needs to be called twice; however, this is unnecessary as
1387 // the performance loss is negligible.
1388 var buffer []byte
1389 for {
1390 // Try to fill the buffer with data
1391 length, err := KeyctlBuffer(cmd, id, buffer, 0)
1392 if err != nil {
1393 return "", err
1394 }
1395
1396 // Check if the data was written
1397 if length <= len(buffer) {
1398 // Exclude the null terminator
1399 return string(buffer[:length-1]), nil
1400 }
1401
1402 // Make a bigger buffer if needed
1403 buffer = make([]byte, length)
1404 }
1405 }
1406
1407 // Keyctl commands with special signatures.
1408
1409 // KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
1410 // See the full documentation at:
1411 // http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
1412 func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
1413 createInt := 0
1414 if create {
1415 createInt = 1
1416 }
1417 return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
1418 }
1419
1420 // KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
1421 // key handle permission mask as described in the "keyctl setperm" section of
1422 // http://man7.org/linux/man-pages/man1/keyctl.1.html.
1423 // See the full documentation at:
1424 // http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
1425 func KeyctlSetperm(id int, perm uint32) error {
1426 _, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
1427 return err
1428 }
1429
1430 //sys keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
1431
1432 // KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
1433 // See the full documentation at:
1434 // http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
1435 func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
1436 return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
1437 }
1438
1439 //sys keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
1440
1441 // KeyctlSearch implements the KEYCTL_SEARCH command.
1442 // See the full documentation at:
1443 // http://man7.org/linux/man-pages/man3/keyctl_search.3.html
1444 func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
1445 return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
1446 }
1447
1448 //sys keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
1449
1450 // KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
1451 // command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
1452 // of Iovec (each of which represents a buffer) instead of a single buffer.
1453 // See the full documentation at:
1454 // http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
1455 func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
1456 return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
1457 }
1458
1459 //sys keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
1460
1461 // KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
1462 // computes a Diffie-Hellman shared secret based on the provide params. The
1463 // secret is written to the provided buffer and the returned size is the number
1464 // of bytes written (returning an error if there is insufficient space in the
1465 // buffer). If a nil buffer is passed in, this function returns the minimum
1466 // buffer length needed to store the appropriate data. Note that this differs
1467 // from KEYCTL_READ's behavior which always returns the requested payload size.
1468 // See the full documentation at:
1469 // http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
1470 func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
1471 return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
1472 }
1473
1474 // KeyctlRestrictKeyring implements the KEYCTL_RESTRICT_KEYRING command. This
1475 // command limits the set of keys that can be linked to the keyring, regardless
1476 // of keyring permissions. The command requires the "setattr" permission.
1477 //
1478 // When called with an empty keyType the command locks the keyring, preventing
1479 // any further keys from being linked to the keyring.
1480 //
1481 // The "asymmetric" keyType defines restrictions requiring key payloads to be
1482 // DER encoded X.509 certificates signed by keys in another keyring. Restrictions
1483 // for "asymmetric" include "builtin_trusted", "builtin_and_secondary_trusted",
1484 // "key_or_keyring:<key>", and "key_or_keyring:<key>:chain".
1485 //
1486 // As of Linux 4.12, only the "asymmetric" keyType defines type-specific
1487 // restrictions.
1488 //
1489 // See the full documentation at:
1490 // http://man7.org/linux/man-pages/man3/keyctl_restrict_keyring.3.html
1491 // http://man7.org/linux/man-pages/man2/keyctl.2.html
1492 func KeyctlRestrictKeyring(ringid int, keyType string, restriction string) error {
1493 if keyType == "" {
1494 return keyctlRestrictKeyring(KEYCTL_RESTRICT_KEYRING, ringid)
1495 }
1496 return keyctlRestrictKeyringByType(KEYCTL_RESTRICT_KEYRING, ringid, keyType, restriction)
1497 }
1498
1499 //sys keyctlRestrictKeyringByType(cmd int, arg2 int, keyType string, restriction string) (err error) = SYS_KEYCTL
1500 //sys keyctlRestrictKeyring(cmd int, arg2 int) (err error) = SYS_KEYCTL
1501
1502 func recvmsgRaw(fd int, iov []Iovec, oob []byte, flags int, rsa *RawSockaddrAny) (n, oobn int, recvflags int, err error) {
1503 var msg Msghdr
1504 msg.Name = (*byte)(unsafe.Pointer(rsa))
1505 msg.Namelen = uint32(SizeofSockaddrAny)
1506 var dummy byte
1507 if len(oob) > 0 {
1508 if emptyIovecs(iov) {
1509 var sockType int
1510 sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1511 if err != nil {
1512 return
1513 }
1514 // receive at least one normal byte
1515 if sockType != SOCK_DGRAM {
1516 var iova [1]Iovec
1517 iova[0].Base = &dummy
1518 iova[0].SetLen(1)
1519 iov = iova[:]
1520 }
1521 }
1522 msg.Control = &oob[0]
1523 msg.SetControllen(len(oob))
1524 }
1525 if len(iov) > 0 {
1526 msg.Iov = &iov[0]
1527 msg.SetIovlen(len(iov))
1528 }
1529 if n, err = recvmsg(fd, &msg, flags); err != nil {
1530 return
1531 }
1532 oobn = int(msg.Controllen)
1533 recvflags = int(msg.Flags)
1534 return
1535 }
1536
1537 func sendmsgN(fd int, iov []Iovec, oob []byte, ptr unsafe.Pointer, salen _Socklen, flags int) (n int, err error) {
1538 var msg Msghdr
1539 msg.Name = (*byte)(ptr)
1540 msg.Namelen = uint32(salen)
1541 var dummy byte
1542 var empty bool
1543 if len(oob) > 0 {
1544 empty := emptyIovecs(iov)
1545 if empty {
1546 var sockType int
1547 sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1548 if err != nil {
1549 return 0, err
1550 }
1551 // send at least one normal byte
1552 if sockType != SOCK_DGRAM {
1553 var iova [1]Iovec
1554 iova[0].Base = &dummy
1555 iova[0].SetLen(1)
1556 }
1557 }
1558 msg.Control = &oob[0]
1559 msg.SetControllen(len(oob))
1560 }
1561 if len(iov) > 0 {
1562 msg.Iov = &iov[0]
1563 msg.SetIovlen(len(iov))
1564 }
1565 if n, err = sendmsg(fd, &msg, flags); err != nil {
1566 return 0, err
1567 }
1568 if len(oob) > 0 && empty {
1569 n = 0
1570 }
1571 return n, nil
1572 }
1573
1574 // BindToDevice binds the socket associated with fd to device.
1575 func BindToDevice(fd int, device string) (err error) {
1576 return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
1577 }
1578
1579 //sys ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
1580
1581 func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
1582 // The peek requests are machine-size oriented, so we wrap it
1583 // to retrieve arbitrary-length data.
1584
1585 // The ptrace syscall differs from glibc's ptrace.
1586 // Peeks returns the word in *data, not as the return value.
1587
1588 var buf [SizeofPtr]byte
1589
1590 // Leading edge. PEEKTEXT/PEEKDATA don't require aligned
1591 // access (PEEKUSER warns that it might), but if we don't
1592 // align our reads, we might straddle an unmapped page
1593 // boundary and not get the bytes leading up to the page
1594 // boundary.
1595 n := 0
1596 if addr%SizeofPtr != 0 {
1597 err = ptrace(req, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1598 if err != nil {
1599 return 0, err
1600 }
1601 n += copy(out, buf[addr%SizeofPtr:])
1602 out = out[n:]
1603 }
1604
1605 // Remainder.
1606 for len(out) > 0 {
1607 // We use an internal buffer to guarantee alignment.
1608 // It's not documented if this is necessary, but we're paranoid.
1609 err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1610 if err != nil {
1611 return n, err
1612 }
1613 copied := copy(out, buf[0:])
1614 n += copied
1615 out = out[copied:]
1616 }
1617
1618 return n, nil
1619 }
1620
1621 func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
1622 return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
1623 }
1624
1625 func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
1626 return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
1627 }
1628
1629 func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
1630 return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
1631 }
1632
1633 func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
1634 // As for ptracePeek, we need to align our accesses to deal
1635 // with the possibility of straddling an invalid page.
1636
1637 // Leading edge.
1638 n := 0
1639 if addr%SizeofPtr != 0 {
1640 var buf [SizeofPtr]byte
1641 err = ptrace(peekReq, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1642 if err != nil {
1643 return 0, err
1644 }
1645 n += copy(buf[addr%SizeofPtr:], data)
1646 word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1647 err = ptrace(pokeReq, pid, addr-addr%SizeofPtr, word)
1648 if err != nil {
1649 return 0, err
1650 }
1651 data = data[n:]
1652 }
1653
1654 // Interior.
1655 for len(data) > SizeofPtr {
1656 word := *((*uintptr)(unsafe.Pointer(&data[0])))
1657 err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1658 if err != nil {
1659 return n, err
1660 }
1661 n += SizeofPtr
1662 data = data[SizeofPtr:]
1663 }
1664
1665 // Trailing edge.
1666 if len(data) > 0 {
1667 var buf [SizeofPtr]byte
1668 err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1669 if err != nil {
1670 return n, err
1671 }
1672 copy(buf[0:], data)
1673 word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1674 err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1675 if err != nil {
1676 return n, err
1677 }
1678 n += len(data)
1679 }
1680
1681 return n, nil
1682 }
1683
1684 func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
1685 return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
1686 }
1687
1688 func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
1689 return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
1690 }
1691
1692 func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
1693 return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
1694 }
1695
1696 func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
1697 return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
1698 }
1699
1700 func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
1701 return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
1702 }
1703
1704 func PtraceSetOptions(pid int, options int) (err error) {
1705 return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
1706 }
1707
1708 func PtraceGetEventMsg(pid int) (msg uint, err error) {
1709 var data _C_long
1710 err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
1711 msg = uint(data)
1712 return
1713 }
1714
1715 func PtraceCont(pid int, signal int) (err error) {
1716 return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
1717 }
1718
1719 func PtraceSyscall(pid int, signal int) (err error) {
1720 return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
1721 }
1722
1723 func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
1724
1725 func PtraceInterrupt(pid int) (err error) { return ptrace(PTRACE_INTERRUPT, pid, 0, 0) }
1726
1727 func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
1728
1729 func PtraceSeize(pid int) (err error) { return ptrace(PTRACE_SEIZE, pid, 0, 0) }
1730
1731 func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
1732
1733 //sys reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
1734
1735 func Reboot(cmd int) (err error) {
1736 return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
1737 }
1738
1739 func direntIno(buf []byte) (uint64, bool) {
1740 return readInt(buf, unsafe.Offsetof(Dirent{}.Ino), unsafe.Sizeof(Dirent{}.Ino))
1741 }
1742
1743 func direntReclen(buf []byte) (uint64, bool) {
1744 return readInt(buf, unsafe.Offsetof(Dirent{}.Reclen), unsafe.Sizeof(Dirent{}.Reclen))
1745 }
1746
1747 func direntNamlen(buf []byte) (uint64, bool) {
1748 reclen, ok := direntReclen(buf)
1749 if !ok {
1750 return 0, false
1751 }
1752 return reclen - uint64(unsafe.Offsetof(Dirent{}.Name)), true
1753 }
1754
1755 //sys mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
1756
1757 func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
1758 // Certain file systems get rather angry and EINVAL if you give
1759 // them an empty string of data, rather than NULL.
1760 if data == "" {
1761 return mount(source, target, fstype, flags, nil)
1762 }
1763 datap, err := BytePtrFromString(data)
1764 if err != nil {
1765 return err
1766 }
1767 return mount(source, target, fstype, flags, datap)
1768 }
1769
1770 //sys mountSetattr(dirfd int, pathname string, flags uint, attr *MountAttr, size uintptr) (err error) = SYS_MOUNT_SETATTR
1771
1772 // MountSetattr is a wrapper for mount_setattr(2).
1773 // https://man7.org/linux/man-pages/man2/mount_setattr.2.html
1774 //
1775 // Requires kernel >= 5.12.
1776 func MountSetattr(dirfd int, pathname string, flags uint, attr *MountAttr) error {
1777 return mountSetattr(dirfd, pathname, flags, attr, unsafe.Sizeof(*attr))
1778 }
1779
1780 func Sendfile(outfd int, infd int, offset *int64, count int) (written int, err error) {
1781 if raceenabled {
1782 raceReleaseMerge(unsafe.Pointer(&ioSync))
1783 }
1784 return sendfile(outfd, infd, offset, count)
1785 }
1786
1787 // Sendto
1788 // Recvfrom
1789 // Socketpair
1790
1791 /*
1792 * Direct access
1793 */
1794 //sys Acct(path string) (err error)
1795 //sys AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
1796 //sys Adjtimex(buf *Timex) (state int, err error)
1797 //sysnb Capget(hdr *CapUserHeader, data *CapUserData) (err error)
1798 //sysnb Capset(hdr *CapUserHeader, data *CapUserData) (err error)
1799 //sys Chdir(path string) (err error)
1800 //sys Chroot(path string) (err error)
1801 //sys ClockGetres(clockid int32, res *Timespec) (err error)
1802 //sys ClockGettime(clockid int32, time *Timespec) (err error)
1803 //sys ClockNanosleep(clockid int32, flags int, request *Timespec, remain *Timespec) (err error)
1804 //sys Close(fd int) (err error)
1805 //sys CloseRange(first uint, last uint, flags uint) (err error)
1806 //sys CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
1807 //sys DeleteModule(name string, flags int) (err error)
1808 //sys Dup(oldfd int) (fd int, err error)
1809
1810 func Dup2(oldfd, newfd int) error {
1811 return Dup3(oldfd, newfd, 0)
1812 }
1813
1814 //sys Dup3(oldfd int, newfd int, flags int) (err error)
1815 //sysnb EpollCreate1(flag int) (fd int, err error)
1816 //sysnb EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
1817 //sys Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
1818 //sys Exit(code int) = SYS_EXIT_GROUP
1819 //sys Fallocate(fd int, mode uint32, off int64, len int64) (err error)
1820 //sys Fchdir(fd int) (err error)
1821 //sys Fchmod(fd int, mode uint32) (err error)
1822 //sys Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
1823 //sys Fdatasync(fd int) (err error)
1824 //sys Fgetxattr(fd int, attr string, dest []byte) (sz int, err error)
1825 //sys FinitModule(fd int, params string, flags int) (err error)
1826 //sys Flistxattr(fd int, dest []byte) (sz int, err error)
1827 //sys Flock(fd int, how int) (err error)
1828 //sys Fremovexattr(fd int, attr string) (err error)
1829 //sys Fsetxattr(fd int, attr string, dest []byte, flags int) (err error)
1830 //sys Fsync(fd int) (err error)
1831 //sys Fsmount(fd int, flags int, mountAttrs int) (fsfd int, err error)
1832 //sys Fsopen(fsName string, flags int) (fd int, err error)
1833 //sys Fspick(dirfd int, pathName string, flags int) (fd int, err error)
1834 //sys Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
1835 //sysnb Getpgid(pid int) (pgid int, err error)
1836
1837 func Getpgrp() (pid int) {
1838 pid, _ = Getpgid(0)
1839 return
1840 }
1841
1842 //sysnb Getpid() (pid int)
1843 //sysnb Getppid() (ppid int)
1844 //sys Getpriority(which int, who int) (prio int, err error)
1845 //sys Getrandom(buf []byte, flags int) (n int, err error)
1846 //sysnb Getrusage(who int, rusage *Rusage) (err error)
1847 //sysnb Getsid(pid int) (sid int, err error)
1848 //sysnb Gettid() (tid int)
1849 //sys Getxattr(path string, attr string, dest []byte) (sz int, err error)
1850 //sys InitModule(moduleImage []byte, params string) (err error)
1851 //sys InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
1852 //sysnb InotifyInit1(flags int) (fd int, err error)
1853 //sysnb InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
1854 //sysnb Kill(pid int, sig syscall.Signal) (err error)
1855 //sys Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
1856 //sys Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
1857 //sys Listxattr(path string, dest []byte) (sz int, err error)
1858 //sys Llistxattr(path string, dest []byte) (sz int, err error)
1859 //sys Lremovexattr(path string, attr string) (err error)
1860 //sys Lsetxattr(path string, attr string, data []byte, flags int) (err error)
1861 //sys MemfdCreate(name string, flags int) (fd int, err error)
1862 //sys Mkdirat(dirfd int, path string, mode uint32) (err error)
1863 //sys Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
1864 //sys MoveMount(fromDirfd int, fromPathName string, toDirfd int, toPathName string, flags int) (err error)
1865 //sys Nanosleep(time *Timespec, leftover *Timespec) (err error)
1866 //sys OpenTree(dfd int, fileName string, flags uint) (r int, err error)
1867 //sys PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
1868 //sys PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
1869 //sysnb Prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
1870 //sys Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
1871 //sys Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
1872 //sys read(fd int, p []byte) (n int, err error)
1873 //sys Removexattr(path string, attr string) (err error)
1874 //sys Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error)
1875 //sys RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
1876 //sys Setdomainname(p []byte) (err error)
1877 //sys Sethostname(p []byte) (err error)
1878 //sysnb Setpgid(pid int, pgid int) (err error)
1879 //sysnb Setsid() (pid int, err error)
1880 //sysnb Settimeofday(tv *Timeval) (err error)
1881 //sys Setns(fd int, nstype int) (err error)
1882
1883 // PrctlRetInt performs a prctl operation specified by option and further
1884 // optional arguments arg2 through arg5 depending on option. It returns a
1885 // non-negative integer that is returned by the prctl syscall.
1886 func PrctlRetInt(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (int, error) {
1887 ret, _, err := Syscall6(SYS_PRCTL, uintptr(option), uintptr(arg2), uintptr(arg3), uintptr(arg4), uintptr(arg5), 0)
1888 if err != 0 {
1889 return 0, err
1890 }
1891 return int(ret), nil
1892 }
1893
1894 // issue 1435.
1895 // On linux Setuid and Setgid only affects the current thread, not the process.
1896 // This does not match what most callers expect so we must return an error
1897 // here rather than letting the caller think that the call succeeded.
1898
1899 func Setuid(uid int) (err error) {
1900 return EOPNOTSUPP
1901 }
1902
1903 func Setgid(uid int) (err error) {
1904 return EOPNOTSUPP
1905 }
1906
1907 // SetfsgidRetGid sets fsgid for current thread and returns previous fsgid set.
1908 // setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability.
1909 // If the call fails due to other reasons, current fsgid will be returned.
1910 func SetfsgidRetGid(gid int) (int, error) {
1911 return setfsgid(gid)
1912 }
1913
1914 // SetfsuidRetUid sets fsuid for current thread and returns previous fsuid set.
1915 // setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability
1916 // If the call fails due to other reasons, current fsuid will be returned.
1917 func SetfsuidRetUid(uid int) (int, error) {
1918 return setfsuid(uid)
1919 }
1920
1921 func Setfsgid(gid int) error {
1922 _, err := setfsgid(gid)
1923 return err
1924 }
1925
1926 func Setfsuid(uid int) error {
1927 _, err := setfsuid(uid)
1928 return err
1929 }
1930
1931 func Signalfd(fd int, sigmask *Sigset_t, flags int) (newfd int, err error) {
1932 return signalfd(fd, sigmask, _C__NSIG/8, flags)
1933 }
1934
1935 //sys Setpriority(which int, who int, prio int) (err error)
1936 //sys Setxattr(path string, attr string, data []byte, flags int) (err error)
1937 //sys signalfd(fd int, sigmask *Sigset_t, maskSize uintptr, flags int) (newfd int, err error) = SYS_SIGNALFD4
1938 //sys Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
1939 //sys Sync()
1940 //sys Syncfs(fd int) (err error)
1941 //sysnb Sysinfo(info *Sysinfo_t) (err error)
1942 //sys Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
1943 //sysnb TimerfdCreate(clockid int, flags int) (fd int, err error)
1944 //sysnb TimerfdGettime(fd int, currValue *ItimerSpec) (err error)
1945 //sysnb TimerfdSettime(fd int, flags int, newValue *ItimerSpec, oldValue *ItimerSpec) (err error)
1946 //sysnb Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
1947 //sysnb Times(tms *Tms) (ticks uintptr, err error)
1948 //sysnb Umask(mask int) (oldmask int)
1949 //sysnb Uname(buf *Utsname) (err error)
1950 //sys Unmount(target string, flags int) (err error) = SYS_UMOUNT2
1951 //sys Unshare(flags int) (err error)
1952 //sys write(fd int, p []byte) (n int, err error)
1953 //sys exitThread(code int) (err error) = SYS_EXIT
1954 //sys readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
1955 //sys writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
1956 //sys readv(fd int, iovs []Iovec) (n int, err error) = SYS_READV
1957 //sys writev(fd int, iovs []Iovec) (n int, err error) = SYS_WRITEV
1958 //sys preadv(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PREADV
1959 //sys pwritev(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PWRITEV
1960 //sys preadv2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PREADV2
1961 //sys pwritev2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PWRITEV2
1962
1963 func bytes2iovec(bs [][]byte) []Iovec {
1964 iovecs := make([]Iovec, len(bs))
1965 for i, b := range bs {
1966 iovecs[i].SetLen(len(b))
1967 if len(b) > 0 {
1968 iovecs[i].Base = &b[0]
1969 } else {
1970 iovecs[i].Base = (*byte)(unsafe.Pointer(&_zero))
1971 }
1972 }
1973 return iovecs
1974 }
1975
1976 // offs2lohi splits offs into its lower and upper unsigned long. On 64-bit
1977 // systems, hi will always be 0. On 32-bit systems, offs will be split in half.
1978 // preadv/pwritev chose this calling convention so they don't need to add a
1979 // padding-register for alignment on ARM.
1980 func offs2lohi(offs int64) (lo, hi uintptr) {
1981 return uintptr(offs), uintptr(uint64(offs) >> SizeofLong)
1982 }
1983
1984 func Readv(fd int, iovs [][]byte) (n int, err error) {
1985 iovecs := bytes2iovec(iovs)
1986 n, err = readv(fd, iovecs)
1987 readvRacedetect(iovecs, n, err)
1988 return n, err
1989 }
1990
1991 func Preadv(fd int, iovs [][]byte, offset int64) (n int, err error) {
1992 iovecs := bytes2iovec(iovs)
1993 lo, hi := offs2lohi(offset)
1994 n, err = preadv(fd, iovecs, lo, hi)
1995 readvRacedetect(iovecs, n, err)
1996 return n, err
1997 }
1998
1999 func Preadv2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
2000 iovecs := bytes2iovec(iovs)
2001 lo, hi := offs2lohi(offset)
2002 n, err = preadv2(fd, iovecs, lo, hi, flags)
2003 readvRacedetect(iovecs, n, err)
2004 return n, err
2005 }
2006
2007 func readvRacedetect(iovecs []Iovec, n int, err error) {
2008 if !raceenabled {
2009 return
2010 }
2011 for i := 0; n > 0 && i < len(iovecs); i++ {
2012 m := int(iovecs[i].Len)
2013 if m > n {
2014 m = n
2015 }
2016 n -= m
2017 if m > 0 {
2018 raceWriteRange(unsafe.Pointer(iovecs[i].Base), m)
2019 }
2020 }
2021 if err == nil {
2022 raceAcquire(unsafe.Pointer(&ioSync))
2023 }
2024 }
2025
2026 func Writev(fd int, iovs [][]byte) (n int, err error) {
2027 iovecs := bytes2iovec(iovs)
2028 if raceenabled {
2029 raceReleaseMerge(unsafe.Pointer(&ioSync))
2030 }
2031 n, err = writev(fd, iovecs)
2032 writevRacedetect(iovecs, n)
2033 return n, err
2034 }
2035
2036 func Pwritev(fd int, iovs [][]byte, offset int64) (n int, err error) {
2037 iovecs := bytes2iovec(iovs)
2038 if raceenabled {
2039 raceReleaseMerge(unsafe.Pointer(&ioSync))
2040 }
2041 lo, hi := offs2lohi(offset)
2042 n, err = pwritev(fd, iovecs, lo, hi)
2043 writevRacedetect(iovecs, n)
2044 return n, err
2045 }
2046
2047 func Pwritev2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
2048 iovecs := bytes2iovec(iovs)
2049 if raceenabled {
2050 raceReleaseMerge(unsafe.Pointer(&ioSync))
2051 }
2052 lo, hi := offs2lohi(offset)
2053 n, err = pwritev2(fd, iovecs, lo, hi, flags)
2054 writevRacedetect(iovecs, n)
2055 return n, err
2056 }
2057
2058 func writevRacedetect(iovecs []Iovec, n int) {
2059 if !raceenabled {
2060 return
2061 }
2062 for i := 0; n > 0 && i < len(iovecs); i++ {
2063 m := int(iovecs[i].Len)
2064 if m > n {
2065 m = n
2066 }
2067 n -= m
2068 if m > 0 {
2069 raceReadRange(unsafe.Pointer(iovecs[i].Base), m)
2070 }
2071 }
2072 }
2073
2074 // mmap varies by architecture; see syscall_linux_*.go.
2075 //sys munmap(addr uintptr, length uintptr) (err error)
2076
2077 var mapper = &mmapper{
2078 active: make(map[*byte][]byte),
2079 mmap: mmap,
2080 munmap: munmap,
2081 }
2082
2083 func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
2084 return mapper.Mmap(fd, offset, length, prot, flags)
2085 }
2086
2087 func Munmap(b []byte) (err error) {
2088 return mapper.Munmap(b)
2089 }
2090
2091 //sys Madvise(b []byte, advice int) (err error)
2092 //sys Mprotect(b []byte, prot int) (err error)
2093 //sys Mlock(b []byte) (err error)
2094 //sys Mlockall(flags int) (err error)
2095 //sys Msync(b []byte, flags int) (err error)
2096 //sys Munlock(b []byte) (err error)
2097 //sys Munlockall() (err error)
2098
2099 // Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
2100 // using the specified flags.
2101 func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
2102 var p unsafe.Pointer
2103 if len(iovs) > 0 {
2104 p = unsafe.Pointer(&iovs[0])
2105 }
2106
2107 n, _, errno := Syscall6(SYS_VMSPLICE, uintptr(fd), uintptr(p), uintptr(len(iovs)), uintptr(flags), 0, 0)
2108 if errno != 0 {
2109 return 0, syscall.Errno(errno)
2110 }
2111
2112 return int(n), nil
2113 }
2114
2115 func isGroupMember(gid int) bool {
2116 groups, err := Getgroups()
2117 if err != nil {
2118 return false
2119 }
2120
2121 for _, g := range groups {
2122 if g == gid {
2123 return true
2124 }
2125 }
2126 return false
2127 }
2128
2129 //sys faccessat(dirfd int, path string, mode uint32) (err error)
2130 //sys Faccessat2(dirfd int, path string, mode uint32, flags int) (err error)
2131
2132 func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) {
2133 if flags == 0 {
2134 return faccessat(dirfd, path, mode)
2135 }
2136
2137 if err := Faccessat2(dirfd, path, mode, flags); err != ENOSYS && err != EPERM {
2138 return err
2139 }
2140
2141 // The Linux kernel faccessat system call does not take any flags.
2142 // The glibc faccessat implements the flags itself; see
2143 // https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD
2144 // Because people naturally expect syscall.Faccessat to act
2145 // like C faccessat, we do the same.
2146
2147 if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
2148 return EINVAL
2149 }
2150
2151 var st Stat_t
2152 if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil {
2153 return err
2154 }
2155
2156 mode &= 7
2157 if mode == 0 {
2158 return nil
2159 }
2160
2161 var uid int
2162 if flags&AT_EACCESS != 0 {
2163 uid = Geteuid()
2164 } else {
2165 uid = Getuid()
2166 }
2167
2168 if uid == 0 {
2169 if mode&1 == 0 {
2170 // Root can read and write any file.
2171 return nil
2172 }
2173 if st.Mode&0111 != 0 {
2174 // Root can execute any file that anybody can execute.
2175 return nil
2176 }
2177 return EACCES
2178 }
2179
2180 var fmode uint32
2181 if uint32(uid) == st.Uid {
2182 fmode = (st.Mode >> 6) & 7
2183 } else {
2184 var gid int
2185 if flags&AT_EACCESS != 0 {
2186 gid = Getegid()
2187 } else {
2188 gid = Getgid()
2189 }
2190
2191 if uint32(gid) == st.Gid || isGroupMember(int(st.Gid)) {
2192 fmode = (st.Mode >> 3) & 7
2193 } else {
2194 fmode = st.Mode & 7
2195 }
2196 }
2197
2198 if fmode&mode == mode {
2199 return nil
2200 }
2201
2202 return EACCES
2203 }
2204
2205 //sys nameToHandleAt(dirFD int, pathname string, fh *fileHandle, mountID *_C_int, flags int) (err error) = SYS_NAME_TO_HANDLE_AT
2206 //sys openByHandleAt(mountFD int, fh *fileHandle, flags int) (fd int, err error) = SYS_OPEN_BY_HANDLE_AT
2207
2208 // fileHandle is the argument to nameToHandleAt and openByHandleAt. We
2209 // originally tried to generate it via unix/linux/types.go with "type
2210 // fileHandle C.struct_file_handle" but that generated empty structs
2211 // for mips64 and mips64le. Instead, hard code it for now (it's the
2212 // same everywhere else) until the mips64 generator issue is fixed.
2213 type fileHandle struct {
2214 Bytes uint32
2215 Type int32
2216 }
2217
2218 // FileHandle represents the C struct file_handle used by
2219 // name_to_handle_at (see NameToHandleAt) and open_by_handle_at (see
2220 // OpenByHandleAt).
2221 type FileHandle struct {
2222 *fileHandle
2223 }
2224
2225 // NewFileHandle constructs a FileHandle.
2226 func NewFileHandle(handleType int32, handle []byte) FileHandle {
2227 const hdrSize = unsafe.Sizeof(fileHandle{})
2228 buf := make([]byte, hdrSize+uintptr(len(handle)))
2229 copy(buf[hdrSize:], handle)
2230 fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
2231 fh.Type = handleType
2232 fh.Bytes = uint32(len(handle))
2233 return FileHandle{fh}
2234 }
2235
2236 func (fh *FileHandle) Size() int { return int(fh.fileHandle.Bytes) }
2237 func (fh *FileHandle) Type() int32 { return fh.fileHandle.Type }
2238 func (fh *FileHandle) Bytes() []byte {
2239 n := fh.Size()
2240 if n == 0 {
2241 return nil
2242 }
2243 return (*[1 << 30]byte)(unsafe.Pointer(uintptr(unsafe.Pointer(&fh.fileHandle.Type)) + 4))[:n:n]
2244 }
2245
2246 // NameToHandleAt wraps the name_to_handle_at system call; it obtains
2247 // a handle for a path name.
2248 func NameToHandleAt(dirfd int, path string, flags int) (handle FileHandle, mountID int, err error) {
2249 var mid _C_int
2250 // Try first with a small buffer, assuming the handle will
2251 // only be 32 bytes.
2252 size := uint32(32 + unsafe.Sizeof(fileHandle{}))
2253 didResize := false
2254 for {
2255 buf := make([]byte, size)
2256 fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
2257 fh.Bytes = size - uint32(unsafe.Sizeof(fileHandle{}))
2258 err = nameToHandleAt(dirfd, path, fh, &mid, flags)
2259 if err == EOVERFLOW {
2260 if didResize {
2261 // We shouldn't need to resize more than once
2262 return
2263 }
2264 didResize = true
2265 size = fh.Bytes + uint32(unsafe.Sizeof(fileHandle{}))
2266 continue
2267 }
2268 if err != nil {
2269 return
2270 }
2271 return FileHandle{fh}, int(mid), nil
2272 }
2273 }
2274
2275 // OpenByHandleAt wraps the open_by_handle_at system call; it opens a
2276 // file via a handle as previously returned by NameToHandleAt.
2277 func OpenByHandleAt(mountFD int, handle FileHandle, flags int) (fd int, err error) {
2278 return openByHandleAt(mountFD, handle.fileHandle, flags)
2279 }
2280
2281 // Klogset wraps the sys_syslog system call; it sets console_loglevel to
2282 // the value specified by arg and passes a dummy pointer to bufp.
2283 func Klogset(typ int, arg int) (err error) {
2284 var p unsafe.Pointer
2285 _, _, errno := Syscall(SYS_SYSLOG, uintptr(typ), uintptr(p), uintptr(arg))
2286 if errno != 0 {
2287 return errnoErr(errno)
2288 }
2289 return nil
2290 }
2291
2292 // RemoteIovec is Iovec with the pointer replaced with an integer.
2293 // It is used for ProcessVMReadv and ProcessVMWritev, where the pointer
2294 // refers to a location in a different process' address space, which
2295 // would confuse the Go garbage collector.
2296 type RemoteIovec struct {
2297 Base uintptr
2298 Len int
2299 }
2300
2301 //sys ProcessVMReadv(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_READV
2302 //sys ProcessVMWritev(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_WRITEV
2303
2304 //sys PidfdOpen(pid int, flags int) (fd int, err error) = SYS_PIDFD_OPEN
2305 //sys PidfdGetfd(pidfd int, targetfd int, flags int) (fd int, err error) = SYS_PIDFD_GETFD
2306 //sys PidfdSendSignal(pidfd int, sig Signal, info *Siginfo, flags int) (err error) = SYS_PIDFD_SEND_SIGNAL
2307
2308 //sys shmat(id int, addr uintptr, flag int) (ret uintptr, err error)
2309 //sys shmctl(id int, cmd int, buf *SysvShmDesc) (result int, err error)
2310 //sys shmdt(addr uintptr) (err error)
2311 //sys shmget(key int, size int, flag int) (id int, err error)
2312
2313 //sys getitimer(which int, currValue *Itimerval) (err error)
2314 //sys setitimer(which int, newValue *Itimerval, oldValue *Itimerval) (err error)
2315
2316 // MakeItimerval creates an Itimerval from interval and value durations.
2317 func MakeItimerval(interval, value time.Duration) Itimerval {
2318 return Itimerval{
2319 Interval: NsecToTimeval(interval.Nanoseconds()),
2320 Value: NsecToTimeval(value.Nanoseconds()),
2321 }
2322 }
2323
2324 // A value which may be passed to the which parameter for Getitimer and
2325 // Setitimer.
2326 type ItimerWhich int
2327
2328 // Possible which values for Getitimer and Setitimer.
2329 const (
2330 ItimerReal ItimerWhich = ITIMER_REAL
2331 ItimerVirtual ItimerWhich = ITIMER_VIRTUAL
2332 ItimerProf ItimerWhich = ITIMER_PROF
2333 )
2334
2335 // Getitimer wraps getitimer(2) to return the current value of the timer
2336 // specified by which.
2337 func Getitimer(which ItimerWhich) (Itimerval, error) {
2338 var it Itimerval
2339 if err := getitimer(int(which), &it); err != nil {
2340 return Itimerval{}, err
2341 }
2342
2343 return it, nil
2344 }
2345
2346 // Setitimer wraps setitimer(2) to arm or disarm the timer specified by which.
2347 // It returns the previous value of the timer.
2348 //
2349 // If the Itimerval argument is the zero value, the timer will be disarmed.
2350 func Setitimer(which ItimerWhich, it Itimerval) (Itimerval, error) {
2351 var prev Itimerval
2352 if err := setitimer(int(which), &it, &prev); err != nil {
2353 return Itimerval{}, err
2354 }
2355
2356 return prev, nil
2357 }
2358
2359 /*
2360 * Unimplemented
2361 */
2362 // AfsSyscall
2363 // ArchPrctl
2364 // Brk
2365 // ClockNanosleep
2366 // ClockSettime
2367 // Clone
2368 // EpollCtlOld
2369 // EpollPwait
2370 // EpollWaitOld
2371 // Execve
2372 // Fork
2373 // Futex
2374 // GetKernelSyms
2375 // GetMempolicy
2376 // GetRobustList
2377 // GetThreadArea
2378 // Getpmsg
2379 // IoCancel
2380 // IoDestroy
2381 // IoGetevents
2382 // IoSetup
2383 // IoSubmit
2384 // IoprioGet
2385 // IoprioSet
2386 // KexecLoad
2387 // LookupDcookie
2388 // Mbind
2389 // MigratePages
2390 // Mincore
2391 // ModifyLdt
2392 // Mount
2393 // MovePages
2394 // MqGetsetattr
2395 // MqNotify
2396 // MqOpen
2397 // MqTimedreceive
2398 // MqTimedsend
2399 // MqUnlink
2400 // Mremap
2401 // Msgctl
2402 // Msgget
2403 // Msgrcv
2404 // Msgsnd
2405 // Nfsservctl
2406 // Personality
2407 // Pselect6
2408 // Ptrace
2409 // Putpmsg
2410 // Quotactl
2411 // Readahead
2412 // Readv
2413 // RemapFilePages
2414 // RestartSyscall
2415 // RtSigaction
2416 // RtSigpending
2417 // RtSigprocmask
2418 // RtSigqueueinfo
2419 // RtSigreturn
2420 // RtSigsuspend
2421 // RtSigtimedwait
2422 // SchedGetPriorityMax
2423 // SchedGetPriorityMin
2424 // SchedGetparam
2425 // SchedGetscheduler
2426 // SchedRrGetInterval
2427 // SchedSetparam
2428 // SchedYield
2429 // Security
2430 // Semctl
2431 // Semget
2432 // Semop
2433 // Semtimedop
2434 // SetMempolicy
2435 // SetRobustList
2436 // SetThreadArea
2437 // SetTidAddress
2438 // Sigaltstack
2439 // Swapoff
2440 // Swapon
2441 // Sysfs
2442 // TimerCreate
2443 // TimerDelete
2444 // TimerGetoverrun
2445 // TimerGettime
2446 // TimerSettime
2447 // Tkill (obsolete)
2448 // Tuxcall
2449 // Umount2
2450 // Uselib
2451 // Utimensat
2452 // Vfork
2453 // Vhangup
2454 // Vserver
2455 // _Sysctl