diff vendor/github.com/dlclark/regexp2/runner.go @ 66:787b5ee0289d draft

Use vendored modules Signed-off-by: Izuru Yakumo <yakumo.izuru@chaotic.ninja>
author yakumo.izuru
date Sun, 23 Jul 2023 13:18:53 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/vendor/github.com/dlclark/regexp2/runner.go	Sun Jul 23 13:18:53 2023 +0000
@@ -0,0 +1,1634 @@
+package regexp2
+
+import (
+	"bytes"
+	"errors"
+	"fmt"
+	"math"
+	"strconv"
+	"strings"
+	"time"
+	"unicode"
+
+	"github.com/dlclark/regexp2/syntax"
+)
+
+type runner struct {
+	re   *Regexp
+	code *syntax.Code
+
+	runtextstart int // starting point for search
+
+	runtext    []rune // text to search
+	runtextpos int    // current position in text
+	runtextend int
+
+	// The backtracking stack.  Opcodes use this to store data regarding
+	// what they have matched and where to backtrack to.  Each "frame" on
+	// the stack takes the form of [CodePosition Data1 Data2...], where
+	// CodePosition is the position of the current opcode and
+	// the data values are all optional.  The CodePosition can be negative, and
+	// these values (also called "back2") are used by the BranchMark family of opcodes
+	// to indicate whether they are backtracking after a successful or failed
+	// match.
+	// When we backtrack, we pop the CodePosition off the stack, set the current
+	// instruction pointer to that code position, and mark the opcode
+	// with a backtracking flag ("Back").  Each opcode then knows how to
+	// handle its own data.
+	runtrack    []int
+	runtrackpos int
+
+	// This stack is used to track text positions across different opcodes.
+	// For example, in /(a*b)+/, the parentheses result in a SetMark/CaptureMark
+	// pair. SetMark records the text position before we match a*b.  Then
+	// CaptureMark uses that position to figure out where the capture starts.
+	// Opcodes which push onto this stack are always paired with other opcodes
+	// which will pop the value from it later.  A successful match should mean
+	// that this stack is empty.
+	runstack    []int
+	runstackpos int
+
+	// The crawl stack is used to keep track of captures.  Every time a group
+	// has a capture, we push its group number onto the runcrawl stack.  In
+	// the case of a balanced match, we push BOTH groups onto the stack.
+	runcrawl    []int
+	runcrawlpos int
+
+	runtrackcount int // count of states that may do backtracking
+
+	runmatch *Match // result object
+
+	ignoreTimeout       bool
+	timeout             time.Duration // timeout in milliseconds (needed for actual)
+	timeoutChecksToSkip int
+	timeoutAt           time.Time
+
+	operator        syntax.InstOp
+	codepos         int
+	rightToLeft     bool
+	caseInsensitive bool
+}
+
+// run searches for matches and can continue from the previous match
+//
+// quick is usually false, but can be true to not return matches, just put it in caches
+// textstart is -1 to start at the "beginning" (depending on Right-To-Left), otherwise an index in input
+// input is the string to search for our regex pattern
+func (re *Regexp) run(quick bool, textstart int, input []rune) (*Match, error) {
+
+	// get a cached runner
+	runner := re.getRunner()
+	defer re.putRunner(runner)
+
+	if textstart < 0 {
+		if re.RightToLeft() {
+			textstart = len(input)
+		} else {
+			textstart = 0
+		}
+	}
+
+	return runner.scan(input, textstart, quick, re.MatchTimeout)
+}
+
+// Scans the string to find the first match. Uses the Match object
+// both to feed text in and as a place to store matches that come out.
+//
+// All the action is in the Go() method. Our
+// responsibility is to load up the class members before
+// calling Go.
+//
+// The optimizer can compute a set of candidate starting characters,
+// and we could use a separate method Skip() that will quickly scan past
+// any characters that we know can't match.
+func (r *runner) scan(rt []rune, textstart int, quick bool, timeout time.Duration) (*Match, error) {
+	r.timeout = timeout
+	r.ignoreTimeout = (time.Duration(math.MaxInt64) == timeout)
+	r.runtextstart = textstart
+	r.runtext = rt
+	r.runtextend = len(rt)
+
+	stoppos := r.runtextend
+	bump := 1
+
+	if r.re.RightToLeft() {
+		bump = -1
+		stoppos = 0
+	}
+
+	r.runtextpos = textstart
+	initted := false
+
+	r.startTimeoutWatch()
+	for {
+		if r.re.Debug() {
+			//fmt.Printf("\nSearch content: %v\n", string(r.runtext))
+			fmt.Printf("\nSearch range: from 0 to %v\n", r.runtextend)
+			fmt.Printf("Firstchar search starting at %v stopping at %v\n", r.runtextpos, stoppos)
+		}
+
+		if r.findFirstChar() {
+			if err := r.checkTimeout(); err != nil {
+				return nil, err
+			}
+
+			if !initted {
+				r.initMatch()
+				initted = true
+			}
+
+			if r.re.Debug() {
+				fmt.Printf("Executing engine starting at %v\n\n", r.runtextpos)
+			}
+
+			if err := r.execute(); err != nil {
+				return nil, err
+			}
+
+			if r.runmatch.matchcount[0] > 0 {
+				// We'll return a match even if it touches a previous empty match
+				return r.tidyMatch(quick), nil
+			}
+
+			// reset state for another go
+			r.runtrackpos = len(r.runtrack)
+			r.runstackpos = len(r.runstack)
+			r.runcrawlpos = len(r.runcrawl)
+		}
+
+		// failure!
+
+		if r.runtextpos == stoppos {
+			r.tidyMatch(true)
+			return nil, nil
+		}
+
+		// Recognize leading []* and various anchors, and bump on failure accordingly
+
+		// r.bump by one and start again
+
+		r.runtextpos += bump
+	}
+	// We never get here
+}
+
+func (r *runner) execute() error {
+
+	r.goTo(0)
+
+	for {
+
+		if r.re.Debug() {
+			r.dumpState()
+		}
+
+		if err := r.checkTimeout(); err != nil {
+			return err
+		}
+
+		switch r.operator {
+		case syntax.Stop:
+			return nil
+
+		case syntax.Nothing:
+			break
+
+		case syntax.Goto:
+			r.goTo(r.operand(0))
+			continue
+
+		case syntax.Testref:
+			if !r.runmatch.isMatched(r.operand(0)) {
+				break
+			}
+			r.advance(1)
+			continue
+
+		case syntax.Lazybranch:
+			r.trackPush1(r.textPos())
+			r.advance(1)
+			continue
+
+		case syntax.Lazybranch | syntax.Back:
+			r.trackPop()
+			r.textto(r.trackPeek())
+			r.goTo(r.operand(0))
+			continue
+
+		case syntax.Setmark:
+			r.stackPush(r.textPos())
+			r.trackPush()
+			r.advance(0)
+			continue
+
+		case syntax.Nullmark:
+			r.stackPush(-1)
+			r.trackPush()
+			r.advance(0)
+			continue
+
+		case syntax.Setmark | syntax.Back, syntax.Nullmark | syntax.Back:
+			r.stackPop()
+			break
+
+		case syntax.Getmark:
+			r.stackPop()
+			r.trackPush1(r.stackPeek())
+			r.textto(r.stackPeek())
+			r.advance(0)
+			continue
+
+		case syntax.Getmark | syntax.Back:
+			r.trackPop()
+			r.stackPush(r.trackPeek())
+			break
+
+		case syntax.Capturemark:
+			if r.operand(1) != -1 && !r.runmatch.isMatched(r.operand(1)) {
+				break
+			}
+			r.stackPop()
+			if r.operand(1) != -1 {
+				r.transferCapture(r.operand(0), r.operand(1), r.stackPeek(), r.textPos())
+			} else {
+				r.capture(r.operand(0), r.stackPeek(), r.textPos())
+			}
+			r.trackPush1(r.stackPeek())
+
+			r.advance(2)
+
+			continue
+
+		case syntax.Capturemark | syntax.Back:
+			r.trackPop()
+			r.stackPush(r.trackPeek())
+			r.uncapture()
+			if r.operand(0) != -1 && r.operand(1) != -1 {
+				r.uncapture()
+			}
+
+			break
+
+		case syntax.Branchmark:
+			r.stackPop()
+
+			matched := r.textPos() - r.stackPeek()
+
+			if matched != 0 { // Nonempty match -> loop now
+				r.trackPush2(r.stackPeek(), r.textPos()) // Save old mark, textpos
+				r.stackPush(r.textPos())                 // Make new mark
+				r.goTo(r.operand(0))                     // Loop
+			} else { // Empty match -> straight now
+				r.trackPushNeg1(r.stackPeek()) // Save old mark
+				r.advance(1)                   // Straight
+			}
+			continue
+
+		case syntax.Branchmark | syntax.Back:
+			r.trackPopN(2)
+			r.stackPop()
+			r.textto(r.trackPeekN(1))      // Recall position
+			r.trackPushNeg1(r.trackPeek()) // Save old mark
+			r.advance(1)                   // Straight
+			continue
+
+		case syntax.Branchmark | syntax.Back2:
+			r.trackPop()
+			r.stackPush(r.trackPeek()) // Recall old mark
+			break                      // Backtrack
+
+		case syntax.Lazybranchmark:
+			{
+				// We hit this the first time through a lazy loop and after each
+				// successful match of the inner expression.  It simply continues
+				// on and doesn't loop.
+				r.stackPop()
+
+				oldMarkPos := r.stackPeek()
+
+				if r.textPos() != oldMarkPos { // Nonempty match -> try to loop again by going to 'back' state
+					if oldMarkPos != -1 {
+						r.trackPush2(oldMarkPos, r.textPos()) // Save old mark, textpos
+					} else {
+						r.trackPush2(r.textPos(), r.textPos())
+					}
+				} else {
+					// The inner expression found an empty match, so we'll go directly to 'back2' if we
+					// backtrack.  In this case, we need to push something on the stack, since back2 pops.
+					// However, in the case of ()+? or similar, this empty match may be legitimate, so push the text
+					// position associated with that empty match.
+					r.stackPush(oldMarkPos)
+
+					r.trackPushNeg1(r.stackPeek()) // Save old mark
+				}
+				r.advance(1)
+				continue
+			}
+
+		case syntax.Lazybranchmark | syntax.Back:
+
+			// After the first time, Lazybranchmark | syntax.Back occurs
+			// with each iteration of the loop, and therefore with every attempted
+			// match of the inner expression.  We'll try to match the inner expression,
+			// then go back to Lazybranchmark if successful.  If the inner expression
+			// fails, we go to Lazybranchmark | syntax.Back2
+
+			r.trackPopN(2)
+			pos := r.trackPeekN(1)
+			r.trackPushNeg1(r.trackPeek()) // Save old mark
+			r.stackPush(pos)               // Make new mark
+			r.textto(pos)                  // Recall position
+			r.goTo(r.operand(0))           // Loop
+			continue
+
+		case syntax.Lazybranchmark | syntax.Back2:
+			// The lazy loop has failed.  We'll do a true backtrack and
+			// start over before the lazy loop.
+			r.stackPop()
+			r.trackPop()
+			r.stackPush(r.trackPeek()) // Recall old mark
+			break
+
+		case syntax.Setcount:
+			r.stackPush2(r.textPos(), r.operand(0))
+			r.trackPush()
+			r.advance(1)
+			continue
+
+		case syntax.Nullcount:
+			r.stackPush2(-1, r.operand(0))
+			r.trackPush()
+			r.advance(1)
+			continue
+
+		case syntax.Setcount | syntax.Back:
+			r.stackPopN(2)
+			break
+
+		case syntax.Nullcount | syntax.Back:
+			r.stackPopN(2)
+			break
+
+		case syntax.Branchcount:
+			// r.stackPush:
+			//  0: Mark
+			//  1: Count
+
+			r.stackPopN(2)
+			mark := r.stackPeek()
+			count := r.stackPeekN(1)
+			matched := r.textPos() - mark
+
+			if count >= r.operand(1) || (matched == 0 && count >= 0) { // Max loops or empty match -> straight now
+				r.trackPushNeg2(mark, count) // Save old mark, count
+				r.advance(2)                 // Straight
+			} else { // Nonempty match -> count+loop now
+				r.trackPush1(mark)                 // remember mark
+				r.stackPush2(r.textPos(), count+1) // Make new mark, incr count
+				r.goTo(r.operand(0))               // Loop
+			}
+			continue
+
+		case syntax.Branchcount | syntax.Back:
+			// r.trackPush:
+			//  0: Previous mark
+			// r.stackPush:
+			//  0: Mark (= current pos, discarded)
+			//  1: Count
+			r.trackPop()
+			r.stackPopN(2)
+			if r.stackPeekN(1) > 0 { // Positive -> can go straight
+				r.textto(r.stackPeek())                           // Zap to mark
+				r.trackPushNeg2(r.trackPeek(), r.stackPeekN(1)-1) // Save old mark, old count
+				r.advance(2)                                      // Straight
+				continue
+			}
+			r.stackPush2(r.trackPeek(), r.stackPeekN(1)-1) // recall old mark, old count
+			break
+
+		case syntax.Branchcount | syntax.Back2:
+			// r.trackPush:
+			//  0: Previous mark
+			//  1: Previous count
+			r.trackPopN(2)
+			r.stackPush2(r.trackPeek(), r.trackPeekN(1)) // Recall old mark, old count
+			break                                        // Backtrack
+
+		case syntax.Lazybranchcount:
+			// r.stackPush:
+			//  0: Mark
+			//  1: Count
+
+			r.stackPopN(2)
+			mark := r.stackPeek()
+			count := r.stackPeekN(1)
+
+			if count < 0 { // Negative count -> loop now
+				r.trackPushNeg1(mark)              // Save old mark
+				r.stackPush2(r.textPos(), count+1) // Make new mark, incr count
+				r.goTo(r.operand(0))               // Loop
+			} else { // Nonneg count -> straight now
+				r.trackPush3(mark, count, r.textPos()) // Save mark, count, position
+				r.advance(2)                           // Straight
+			}
+			continue
+
+		case syntax.Lazybranchcount | syntax.Back:
+			// r.trackPush:
+			//  0: Mark
+			//  1: Count
+			//  2: r.textPos
+
+			r.trackPopN(3)
+			mark := r.trackPeek()
+			textpos := r.trackPeekN(2)
+
+			if r.trackPeekN(1) < r.operand(1) && textpos != mark { // Under limit and not empty match -> loop
+				r.textto(textpos)                        // Recall position
+				r.stackPush2(textpos, r.trackPeekN(1)+1) // Make new mark, incr count
+				r.trackPushNeg1(mark)                    // Save old mark
+				r.goTo(r.operand(0))                     // Loop
+				continue
+			} else { // Max loops or empty match -> backtrack
+				r.stackPush2(r.trackPeek(), r.trackPeekN(1)) // Recall old mark, count
+				break                                        // backtrack
+			}
+
+		case syntax.Lazybranchcount | syntax.Back2:
+			// r.trackPush:
+			//  0: Previous mark
+			// r.stackPush:
+			//  0: Mark (== current pos, discarded)
+			//  1: Count
+			r.trackPop()
+			r.stackPopN(2)
+			r.stackPush2(r.trackPeek(), r.stackPeekN(1)-1) // Recall old mark, count
+			break                                          // Backtrack
+
+		case syntax.Setjump:
+			r.stackPush2(r.trackpos(), r.crawlpos())
+			r.trackPush()
+			r.advance(0)
+			continue
+
+		case syntax.Setjump | syntax.Back:
+			r.stackPopN(2)
+			break
+
+		case syntax.Backjump:
+			// r.stackPush:
+			//  0: Saved trackpos
+			//  1: r.crawlpos
+			r.stackPopN(2)
+			r.trackto(r.stackPeek())
+
+			for r.crawlpos() != r.stackPeekN(1) {
+				r.uncapture()
+			}
+
+			break
+
+		case syntax.Forejump:
+			// r.stackPush:
+			//  0: Saved trackpos
+			//  1: r.crawlpos
+			r.stackPopN(2)
+			r.trackto(r.stackPeek())
+			r.trackPush1(r.stackPeekN(1))
+			r.advance(0)
+			continue
+
+		case syntax.Forejump | syntax.Back:
+			// r.trackPush:
+			//  0: r.crawlpos
+			r.trackPop()
+
+			for r.crawlpos() != r.trackPeek() {
+				r.uncapture()
+			}
+
+			break
+
+		case syntax.Bol:
+			if r.leftchars() > 0 && r.charAt(r.textPos()-1) != '\n' {
+				break
+			}
+			r.advance(0)
+			continue
+
+		case syntax.Eol:
+			if r.rightchars() > 0 && r.charAt(r.textPos()) != '\n' {
+				break
+			}
+			r.advance(0)
+			continue
+
+		case syntax.Boundary:
+			if !r.isBoundary(r.textPos(), 0, r.runtextend) {
+				break
+			}
+			r.advance(0)
+			continue
+
+		case syntax.Nonboundary:
+			if r.isBoundary(r.textPos(), 0, r.runtextend) {
+				break
+			}
+			r.advance(0)
+			continue
+
+		case syntax.ECMABoundary:
+			if !r.isECMABoundary(r.textPos(), 0, r.runtextend) {
+				break
+			}
+			r.advance(0)
+			continue
+
+		case syntax.NonECMABoundary:
+			if r.isECMABoundary(r.textPos(), 0, r.runtextend) {
+				break
+			}
+			r.advance(0)
+			continue
+
+		case syntax.Beginning:
+			if r.leftchars() > 0 {
+				break
+			}
+			r.advance(0)
+			continue
+
+		case syntax.Start:
+			if r.textPos() != r.textstart() {
+				break
+			}
+			r.advance(0)
+			continue
+
+		case syntax.EndZ:
+			rchars := r.rightchars()
+			if rchars > 1 {
+				break
+			}
+			// RE2 and EcmaScript define $ as "asserts position at the end of the string"
+			// PCRE/.NET adds "or before the line terminator right at the end of the string (if any)"
+			if (r.re.options & (RE2 | ECMAScript)) != 0 {
+				// RE2/Ecmascript mode
+				if rchars > 0 {
+					break
+				}
+			} else if rchars == 1 && r.charAt(r.textPos()) != '\n' {
+				// "regular" mode
+				break
+			}
+
+			r.advance(0)
+			continue
+
+		case syntax.End:
+			if r.rightchars() > 0 {
+				break
+			}
+			r.advance(0)
+			continue
+
+		case syntax.One:
+			if r.forwardchars() < 1 || r.forwardcharnext() != rune(r.operand(0)) {
+				break
+			}
+
+			r.advance(1)
+			continue
+
+		case syntax.Notone:
+			if r.forwardchars() < 1 || r.forwardcharnext() == rune(r.operand(0)) {
+				break
+			}
+
+			r.advance(1)
+			continue
+
+		case syntax.Set:
+
+			if r.forwardchars() < 1 || !r.code.Sets[r.operand(0)].CharIn(r.forwardcharnext()) {
+				break
+			}
+
+			r.advance(1)
+			continue
+
+		case syntax.Multi:
+			if !r.runematch(r.code.Strings[r.operand(0)]) {
+				break
+			}
+
+			r.advance(1)
+			continue
+
+		case syntax.Ref:
+
+			capnum := r.operand(0)
+
+			if r.runmatch.isMatched(capnum) {
+				if !r.refmatch(r.runmatch.matchIndex(capnum), r.runmatch.matchLength(capnum)) {
+					break
+				}
+			} else {
+				if (r.re.options & ECMAScript) == 0 {
+					break
+				}
+			}
+
+			r.advance(1)
+			continue
+
+		case syntax.Onerep:
+
+			c := r.operand(1)
+
+			if r.forwardchars() < c {
+				break
+			}
+
+			ch := rune(r.operand(0))
+
+			for c > 0 {
+				if r.forwardcharnext() != ch {
+					goto BreakBackward
+				}
+				c--
+			}
+
+			r.advance(2)
+			continue
+
+		case syntax.Notonerep:
+
+			c := r.operand(1)
+
+			if r.forwardchars() < c {
+				break
+			}
+			ch := rune(r.operand(0))
+
+			for c > 0 {
+				if r.forwardcharnext() == ch {
+					goto BreakBackward
+				}
+				c--
+			}
+
+			r.advance(2)
+			continue
+
+		case syntax.Setrep:
+
+			c := r.operand(1)
+
+			if r.forwardchars() < c {
+				break
+			}
+
+			set := r.code.Sets[r.operand(0)]
+
+			for c > 0 {
+				if !set.CharIn(r.forwardcharnext()) {
+					goto BreakBackward
+				}
+				c--
+			}
+
+			r.advance(2)
+			continue
+
+		case syntax.Oneloop:
+
+			c := r.operand(1)
+
+			if c > r.forwardchars() {
+				c = r.forwardchars()
+			}
+
+			ch := rune(r.operand(0))
+			i := c
+
+			for ; i > 0; i-- {
+				if r.forwardcharnext() != ch {
+					r.backwardnext()
+					break
+				}
+			}
+
+			if c > i {
+				r.trackPush2(c-i-1, r.textPos()-r.bump())
+			}
+
+			r.advance(2)
+			continue
+
+		case syntax.Notoneloop:
+
+			c := r.operand(1)
+
+			if c > r.forwardchars() {
+				c = r.forwardchars()
+			}
+
+			ch := rune(r.operand(0))
+			i := c
+
+			for ; i > 0; i-- {
+				if r.forwardcharnext() == ch {
+					r.backwardnext()
+					break
+				}
+			}
+
+			if c > i {
+				r.trackPush2(c-i-1, r.textPos()-r.bump())
+			}
+
+			r.advance(2)
+			continue
+
+		case syntax.Setloop:
+
+			c := r.operand(1)
+
+			if c > r.forwardchars() {
+				c = r.forwardchars()
+			}
+
+			set := r.code.Sets[r.operand(0)]
+			i := c
+
+			for ; i > 0; i-- {
+				if !set.CharIn(r.forwardcharnext()) {
+					r.backwardnext()
+					break
+				}
+			}
+
+			if c > i {
+				r.trackPush2(c-i-1, r.textPos()-r.bump())
+			}
+
+			r.advance(2)
+			continue
+
+		case syntax.Oneloop | syntax.Back, syntax.Notoneloop | syntax.Back:
+
+			r.trackPopN(2)
+			i := r.trackPeek()
+			pos := r.trackPeekN(1)
+
+			r.textto(pos)
+
+			if i > 0 {
+				r.trackPush2(i-1, pos-r.bump())
+			}
+
+			r.advance(2)
+			continue
+
+		case syntax.Setloop | syntax.Back:
+
+			r.trackPopN(2)
+			i := r.trackPeek()
+			pos := r.trackPeekN(1)
+
+			r.textto(pos)
+
+			if i > 0 {
+				r.trackPush2(i-1, pos-r.bump())
+			}
+
+			r.advance(2)
+			continue
+
+		case syntax.Onelazy, syntax.Notonelazy:
+
+			c := r.operand(1)
+
+			if c > r.forwardchars() {
+				c = r.forwardchars()
+			}
+
+			if c > 0 {
+				r.trackPush2(c-1, r.textPos())
+			}
+
+			r.advance(2)
+			continue
+
+		case syntax.Setlazy:
+
+			c := r.operand(1)
+
+			if c > r.forwardchars() {
+				c = r.forwardchars()
+			}
+
+			if c > 0 {
+				r.trackPush2(c-1, r.textPos())
+			}
+
+			r.advance(2)
+			continue
+
+		case syntax.Onelazy | syntax.Back:
+
+			r.trackPopN(2)
+			pos := r.trackPeekN(1)
+			r.textto(pos)
+
+			if r.forwardcharnext() != rune(r.operand(0)) {
+				break
+			}
+
+			i := r.trackPeek()
+
+			if i > 0 {
+				r.trackPush2(i-1, pos+r.bump())
+			}
+
+			r.advance(2)
+			continue
+
+		case syntax.Notonelazy | syntax.Back:
+
+			r.trackPopN(2)
+			pos := r.trackPeekN(1)
+			r.textto(pos)
+
+			if r.forwardcharnext() == rune(r.operand(0)) {
+				break
+			}
+
+			i := r.trackPeek()
+
+			if i > 0 {
+				r.trackPush2(i-1, pos+r.bump())
+			}
+
+			r.advance(2)
+			continue
+
+		case syntax.Setlazy | syntax.Back:
+
+			r.trackPopN(2)
+			pos := r.trackPeekN(1)
+			r.textto(pos)
+
+			if !r.code.Sets[r.operand(0)].CharIn(r.forwardcharnext()) {
+				break
+			}
+
+			i := r.trackPeek()
+
+			if i > 0 {
+				r.trackPush2(i-1, pos+r.bump())
+			}
+
+			r.advance(2)
+			continue
+
+		default:
+			return errors.New("unknown state in regex runner")
+		}
+
+	BreakBackward:
+		;
+
+		// "break Backward" comes here:
+		r.backtrack()
+	}
+}
+
+// increase the size of stack and track storage
+func (r *runner) ensureStorage() {
+	if r.runstackpos < r.runtrackcount*4 {
+		doubleIntSlice(&r.runstack, &r.runstackpos)
+	}
+	if r.runtrackpos < r.runtrackcount*4 {
+		doubleIntSlice(&r.runtrack, &r.runtrackpos)
+	}
+}
+
+func doubleIntSlice(s *[]int, pos *int) {
+	oldLen := len(*s)
+	newS := make([]int, oldLen*2)
+
+	copy(newS[oldLen:], *s)
+	*pos += oldLen
+	*s = newS
+}
+
+// Save a number on the longjump unrolling stack
+func (r *runner) crawl(i int) {
+	if r.runcrawlpos == 0 {
+		doubleIntSlice(&r.runcrawl, &r.runcrawlpos)
+	}
+	r.runcrawlpos--
+	r.runcrawl[r.runcrawlpos] = i
+}
+
+// Remove a number from the longjump unrolling stack
+func (r *runner) popcrawl() int {
+	val := r.runcrawl[r.runcrawlpos]
+	r.runcrawlpos++
+	return val
+}
+
+// Get the height of the stack
+func (r *runner) crawlpos() int {
+	return len(r.runcrawl) - r.runcrawlpos
+}
+
+func (r *runner) advance(i int) {
+	r.codepos += (i + 1)
+	r.setOperator(r.code.Codes[r.codepos])
+}
+
+func (r *runner) goTo(newpos int) {
+	// when branching backward or in place, ensure storage
+	if newpos <= r.codepos {
+		r.ensureStorage()
+	}
+
+	r.setOperator(r.code.Codes[newpos])
+	r.codepos = newpos
+}
+
+func (r *runner) textto(newpos int) {
+	r.runtextpos = newpos
+}
+
+func (r *runner) trackto(newpos int) {
+	r.runtrackpos = len(r.runtrack) - newpos
+}
+
+func (r *runner) textstart() int {
+	return r.runtextstart
+}
+
+func (r *runner) textPos() int {
+	return r.runtextpos
+}
+
+// push onto the backtracking stack
+func (r *runner) trackpos() int {
+	return len(r.runtrack) - r.runtrackpos
+}
+
+func (r *runner) trackPush() {
+	r.runtrackpos--
+	r.runtrack[r.runtrackpos] = r.codepos
+}
+
+func (r *runner) trackPush1(I1 int) {
+	r.runtrackpos--
+	r.runtrack[r.runtrackpos] = I1
+	r.runtrackpos--
+	r.runtrack[r.runtrackpos] = r.codepos
+}
+
+func (r *runner) trackPush2(I1, I2 int) {
+	r.runtrackpos--
+	r.runtrack[r.runtrackpos] = I1
+	r.runtrackpos--
+	r.runtrack[r.runtrackpos] = I2
+	r.runtrackpos--
+	r.runtrack[r.runtrackpos] = r.codepos
+}
+
+func (r *runner) trackPush3(I1, I2, I3 int) {
+	r.runtrackpos--
+	r.runtrack[r.runtrackpos] = I1
+	r.runtrackpos--
+	r.runtrack[r.runtrackpos] = I2
+	r.runtrackpos--
+	r.runtrack[r.runtrackpos] = I3
+	r.runtrackpos--
+	r.runtrack[r.runtrackpos] = r.codepos
+}
+
+func (r *runner) trackPushNeg1(I1 int) {
+	r.runtrackpos--
+	r.runtrack[r.runtrackpos] = I1
+	r.runtrackpos--
+	r.runtrack[r.runtrackpos] = -r.codepos
+}
+
+func (r *runner) trackPushNeg2(I1, I2 int) {
+	r.runtrackpos--
+	r.runtrack[r.runtrackpos] = I1
+	r.runtrackpos--
+	r.runtrack[r.runtrackpos] = I2
+	r.runtrackpos--
+	r.runtrack[r.runtrackpos] = -r.codepos
+}
+
+func (r *runner) backtrack() {
+	newpos := r.runtrack[r.runtrackpos]
+	r.runtrackpos++
+
+	if r.re.Debug() {
+		if newpos < 0 {
+			fmt.Printf("       Backtracking (back2) to code position %v\n", -newpos)
+		} else {
+			fmt.Printf("       Backtracking to code position %v\n", newpos)
+		}
+	}
+
+	if newpos < 0 {
+		newpos = -newpos
+		r.setOperator(r.code.Codes[newpos] | syntax.Back2)
+	} else {
+		r.setOperator(r.code.Codes[newpos] | syntax.Back)
+	}
+
+	// When branching backward, ensure storage
+	if newpos < r.codepos {
+		r.ensureStorage()
+	}
+
+	r.codepos = newpos
+}
+
+func (r *runner) setOperator(op int) {
+	r.caseInsensitive = (0 != (op & syntax.Ci))
+	r.rightToLeft = (0 != (op & syntax.Rtl))
+	r.operator = syntax.InstOp(op & ^(syntax.Rtl | syntax.Ci))
+}
+
+func (r *runner) trackPop() {
+	r.runtrackpos++
+}
+
+// pop framesize items from the backtracking stack
+func (r *runner) trackPopN(framesize int) {
+	r.runtrackpos += framesize
+}
+
+// Technically we are actually peeking at items already popped.  So if you want to
+// get and pop the top item from the stack, you do
+// r.trackPop();
+// r.trackPeek();
+func (r *runner) trackPeek() int {
+	return r.runtrack[r.runtrackpos-1]
+}
+
+// get the ith element down on the backtracking stack
+func (r *runner) trackPeekN(i int) int {
+	return r.runtrack[r.runtrackpos-i-1]
+}
+
+// Push onto the grouping stack
+func (r *runner) stackPush(I1 int) {
+	r.runstackpos--
+	r.runstack[r.runstackpos] = I1
+}
+
+func (r *runner) stackPush2(I1, I2 int) {
+	r.runstackpos--
+	r.runstack[r.runstackpos] = I1
+	r.runstackpos--
+	r.runstack[r.runstackpos] = I2
+}
+
+func (r *runner) stackPop() {
+	r.runstackpos++
+}
+
+// pop framesize items from the grouping stack
+func (r *runner) stackPopN(framesize int) {
+	r.runstackpos += framesize
+}
+
+// Technically we are actually peeking at items already popped.  So if you want to
+// get and pop the top item from the stack, you do
+// r.stackPop();
+// r.stackPeek();
+func (r *runner) stackPeek() int {
+	return r.runstack[r.runstackpos-1]
+}
+
+// get the ith element down on the grouping stack
+func (r *runner) stackPeekN(i int) int {
+	return r.runstack[r.runstackpos-i-1]
+}
+
+func (r *runner) operand(i int) int {
+	return r.code.Codes[r.codepos+i+1]
+}
+
+func (r *runner) leftchars() int {
+	return r.runtextpos
+}
+
+func (r *runner) rightchars() int {
+	return r.runtextend - r.runtextpos
+}
+
+func (r *runner) bump() int {
+	if r.rightToLeft {
+		return -1
+	}
+	return 1
+}
+
+func (r *runner) forwardchars() int {
+	if r.rightToLeft {
+		return r.runtextpos
+	}
+	return r.runtextend - r.runtextpos
+}
+
+func (r *runner) forwardcharnext() rune {
+	var ch rune
+	if r.rightToLeft {
+		r.runtextpos--
+		ch = r.runtext[r.runtextpos]
+	} else {
+		ch = r.runtext[r.runtextpos]
+		r.runtextpos++
+	}
+
+	if r.caseInsensitive {
+		return unicode.ToLower(ch)
+	}
+	return ch
+}
+
+func (r *runner) runematch(str []rune) bool {
+	var pos int
+
+	c := len(str)
+	if !r.rightToLeft {
+		if r.runtextend-r.runtextpos < c {
+			return false
+		}
+
+		pos = r.runtextpos + c
+	} else {
+		if r.runtextpos-0 < c {
+			return false
+		}
+
+		pos = r.runtextpos
+	}
+
+	if !r.caseInsensitive {
+		for c != 0 {
+			c--
+			pos--
+			if str[c] != r.runtext[pos] {
+				return false
+			}
+		}
+	} else {
+		for c != 0 {
+			c--
+			pos--
+			if str[c] != unicode.ToLower(r.runtext[pos]) {
+				return false
+			}
+		}
+	}
+
+	if !r.rightToLeft {
+		pos += len(str)
+	}
+
+	r.runtextpos = pos
+
+	return true
+}
+
+func (r *runner) refmatch(index, len int) bool {
+	var c, pos, cmpos int
+
+	if !r.rightToLeft {
+		if r.runtextend-r.runtextpos < len {
+			return false
+		}
+
+		pos = r.runtextpos + len
+	} else {
+		if r.runtextpos-0 < len {
+			return false
+		}
+
+		pos = r.runtextpos
+	}
+	cmpos = index + len
+
+	c = len
+
+	if !r.caseInsensitive {
+		for c != 0 {
+			c--
+			cmpos--
+			pos--
+			if r.runtext[cmpos] != r.runtext[pos] {
+				return false
+			}
+
+		}
+	} else {
+		for c != 0 {
+			c--
+			cmpos--
+			pos--
+
+			if unicode.ToLower(r.runtext[cmpos]) != unicode.ToLower(r.runtext[pos]) {
+				return false
+			}
+		}
+	}
+
+	if !r.rightToLeft {
+		pos += len
+	}
+
+	r.runtextpos = pos
+
+	return true
+}
+
+func (r *runner) backwardnext() {
+	if r.rightToLeft {
+		r.runtextpos++
+	} else {
+		r.runtextpos--
+	}
+}
+
+func (r *runner) charAt(j int) rune {
+	return r.runtext[j]
+}
+
+func (r *runner) findFirstChar() bool {
+
+	if 0 != (r.code.Anchors & (syntax.AnchorBeginning | syntax.AnchorStart | syntax.AnchorEndZ | syntax.AnchorEnd)) {
+		if !r.code.RightToLeft {
+			if (0 != (r.code.Anchors&syntax.AnchorBeginning) && r.runtextpos > 0) ||
+				(0 != (r.code.Anchors&syntax.AnchorStart) && r.runtextpos > r.runtextstart) {
+				r.runtextpos = r.runtextend
+				return false
+			}
+			if 0 != (r.code.Anchors&syntax.AnchorEndZ) && r.runtextpos < r.runtextend-1 {
+				r.runtextpos = r.runtextend - 1
+			} else if 0 != (r.code.Anchors&syntax.AnchorEnd) && r.runtextpos < r.runtextend {
+				r.runtextpos = r.runtextend
+			}
+		} else {
+			if (0 != (r.code.Anchors&syntax.AnchorEnd) && r.runtextpos < r.runtextend) ||
+				(0 != (r.code.Anchors&syntax.AnchorEndZ) && (r.runtextpos < r.runtextend-1 ||
+					(r.runtextpos == r.runtextend-1 && r.charAt(r.runtextpos) != '\n'))) ||
+				(0 != (r.code.Anchors&syntax.AnchorStart) && r.runtextpos < r.runtextstart) {
+				r.runtextpos = 0
+				return false
+			}
+			if 0 != (r.code.Anchors&syntax.AnchorBeginning) && r.runtextpos > 0 {
+				r.runtextpos = 0
+			}
+		}
+
+		if r.code.BmPrefix != nil {
+			return r.code.BmPrefix.IsMatch(r.runtext, r.runtextpos, 0, r.runtextend)
+		}
+
+		return true // found a valid start or end anchor
+	} else if r.code.BmPrefix != nil {
+		r.runtextpos = r.code.BmPrefix.Scan(r.runtext, r.runtextpos, 0, r.runtextend)
+
+		if r.runtextpos == -1 {
+			if r.code.RightToLeft {
+				r.runtextpos = 0
+			} else {
+				r.runtextpos = r.runtextend
+			}
+			return false
+		}
+
+		return true
+	} else if r.code.FcPrefix == nil {
+		return true
+	}
+
+	r.rightToLeft = r.code.RightToLeft
+	r.caseInsensitive = r.code.FcPrefix.CaseInsensitive
+
+	set := r.code.FcPrefix.PrefixSet
+	if set.IsSingleton() {
+		ch := set.SingletonChar()
+		for i := r.forwardchars(); i > 0; i-- {
+			if ch == r.forwardcharnext() {
+				r.backwardnext()
+				return true
+			}
+		}
+	} else {
+		for i := r.forwardchars(); i > 0; i-- {
+			n := r.forwardcharnext()
+			//fmt.Printf("%v in %v: %v\n", string(n), set.String(), set.CharIn(n))
+			if set.CharIn(n) {
+				r.backwardnext()
+				return true
+			}
+		}
+	}
+
+	return false
+}
+
+func (r *runner) initMatch() {
+	// Use a hashtable'ed Match object if the capture numbers are sparse
+
+	if r.runmatch == nil {
+		if r.re.caps != nil {
+			r.runmatch = newMatchSparse(r.re, r.re.caps, r.re.capsize, r.runtext, r.runtextstart)
+		} else {
+			r.runmatch = newMatch(r.re, r.re.capsize, r.runtext, r.runtextstart)
+		}
+	} else {
+		r.runmatch.reset(r.runtext, r.runtextstart)
+	}
+
+	// note we test runcrawl, because it is the last one to be allocated
+	// If there is an alloc failure in the middle of the three allocations,
+	// we may still return to reuse this instance, and we want to behave
+	// as if the allocations didn't occur. (we used to test _trackcount != 0)
+
+	if r.runcrawl != nil {
+		r.runtrackpos = len(r.runtrack)
+		r.runstackpos = len(r.runstack)
+		r.runcrawlpos = len(r.runcrawl)
+		return
+	}
+
+	r.initTrackCount()
+
+	tracksize := r.runtrackcount * 8
+	stacksize := r.runtrackcount * 8
+
+	if tracksize < 32 {
+		tracksize = 32
+	}
+	if stacksize < 16 {
+		stacksize = 16
+	}
+
+	r.runtrack = make([]int, tracksize)
+	r.runtrackpos = tracksize
+
+	r.runstack = make([]int, stacksize)
+	r.runstackpos = stacksize
+
+	r.runcrawl = make([]int, 32)
+	r.runcrawlpos = 32
+}
+
+func (r *runner) tidyMatch(quick bool) *Match {
+	if !quick {
+		match := r.runmatch
+
+		r.runmatch = nil
+
+		match.tidy(r.runtextpos)
+		return match
+	} else {
+		// send back our match -- it's not leaving the package, so it's safe to not clean it up
+		// this reduces allocs for frequent calls to the "IsMatch" bool-only functions
+		return r.runmatch
+	}
+}
+
+// capture captures a subexpression. Note that the
+// capnum used here has already been mapped to a non-sparse
+// index (by the code generator RegexWriter).
+func (r *runner) capture(capnum, start, end int) {
+	if end < start {
+		T := end
+		end = start
+		start = T
+	}
+
+	r.crawl(capnum)
+	r.runmatch.addMatch(capnum, start, end-start)
+}
+
+// transferCapture captures a subexpression. Note that the
+// capnum used here has already been mapped to a non-sparse
+// index (by the code generator RegexWriter).
+func (r *runner) transferCapture(capnum, uncapnum, start, end int) {
+	var start2, end2 int
+
+	// these are the two intervals that are cancelling each other
+
+	if end < start {
+		T := end
+		end = start
+		start = T
+	}
+
+	start2 = r.runmatch.matchIndex(uncapnum)
+	end2 = start2 + r.runmatch.matchLength(uncapnum)
+
+	// The new capture gets the innermost defined interval
+
+	if start >= end2 {
+		end = start
+		start = end2
+	} else if end <= start2 {
+		start = start2
+	} else {
+		if end > end2 {
+			end = end2
+		}
+		if start2 > start {
+			start = start2
+		}
+	}
+
+	r.crawl(uncapnum)
+	r.runmatch.balanceMatch(uncapnum)
+
+	if capnum != -1 {
+		r.crawl(capnum)
+		r.runmatch.addMatch(capnum, start, end-start)
+	}
+}
+
+// revert the last capture
+func (r *runner) uncapture() {
+	capnum := r.popcrawl()
+	r.runmatch.removeMatch(capnum)
+}
+
+//debug
+
+func (r *runner) dumpState() {
+	back := ""
+	if r.operator&syntax.Back != 0 {
+		back = " Back"
+	}
+	if r.operator&syntax.Back2 != 0 {
+		back += " Back2"
+	}
+	fmt.Printf("Text:  %v\nTrack: %v\nStack: %v\n       %s%s\n\n",
+		r.textposDescription(),
+		r.stackDescription(r.runtrack, r.runtrackpos),
+		r.stackDescription(r.runstack, r.runstackpos),
+		r.code.OpcodeDescription(r.codepos),
+		back)
+}
+
+func (r *runner) stackDescription(a []int, index int) string {
+	buf := &bytes.Buffer{}
+
+	fmt.Fprintf(buf, "%v/%v", len(a)-index, len(a))
+	if buf.Len() < 8 {
+		buf.WriteString(strings.Repeat(" ", 8-buf.Len()))
+	}
+
+	buf.WriteRune('(')
+	for i := index; i < len(a); i++ {
+		if i > index {
+			buf.WriteRune(' ')
+		}
+
+		buf.WriteString(strconv.Itoa(a[i]))
+	}
+
+	buf.WriteRune(')')
+
+	return buf.String()
+}
+
+func (r *runner) textposDescription() string {
+	buf := &bytes.Buffer{}
+
+	buf.WriteString(strconv.Itoa(r.runtextpos))
+
+	if buf.Len() < 8 {
+		buf.WriteString(strings.Repeat(" ", 8-buf.Len()))
+	}
+
+	if r.runtextpos > 0 {
+		buf.WriteString(syntax.CharDescription(r.runtext[r.runtextpos-1]))
+	} else {
+		buf.WriteRune('^')
+	}
+
+	buf.WriteRune('>')
+
+	for i := r.runtextpos; i < r.runtextend; i++ {
+		buf.WriteString(syntax.CharDescription(r.runtext[i]))
+	}
+	if buf.Len() >= 64 {
+		buf.Truncate(61)
+		buf.WriteString("...")
+	} else {
+		buf.WriteRune('$')
+	}
+
+	return buf.String()
+}
+
+// decide whether the pos
+// at the specified index is a boundary or not. It's just not worth
+// emitting inline code for this logic.
+func (r *runner) isBoundary(index, startpos, endpos int) bool {
+	return (index > startpos && syntax.IsWordChar(r.runtext[index-1])) !=
+		(index < endpos && syntax.IsWordChar(r.runtext[index]))
+}
+
+func (r *runner) isECMABoundary(index, startpos, endpos int) bool {
+	return (index > startpos && syntax.IsECMAWordChar(r.runtext[index-1])) !=
+		(index < endpos && syntax.IsECMAWordChar(r.runtext[index]))
+}
+
+// this seems like a comment to justify randomly picking 1000 :-P
+// We have determined this value in a series of experiments where x86 retail
+// builds (ono-lab-optimized) were run on different pattern/input pairs. Larger values
+// of TimeoutCheckFrequency did not tend to increase performance; smaller values
+// of TimeoutCheckFrequency tended to slow down the execution.
+const timeoutCheckFrequency int = 1000
+
+func (r *runner) startTimeoutWatch() {
+	if r.ignoreTimeout {
+		return
+	}
+
+	r.timeoutChecksToSkip = timeoutCheckFrequency
+	r.timeoutAt = time.Now().Add(r.timeout)
+}
+
+func (r *runner) checkTimeout() error {
+	if r.ignoreTimeout {
+		return nil
+	}
+	r.timeoutChecksToSkip--
+	if r.timeoutChecksToSkip != 0 {
+		return nil
+	}
+
+	r.timeoutChecksToSkip = timeoutCheckFrequency
+	return r.doCheckTimeout()
+}
+
+func (r *runner) doCheckTimeout() error {
+	current := time.Now()
+
+	if current.Before(r.timeoutAt) {
+		return nil
+	}
+
+	if r.re.Debug() {
+		//Debug.WriteLine("")
+		//Debug.WriteLine("RegEx match timeout occurred!")
+		//Debug.WriteLine("Specified timeout:       " + TimeSpan.FromMilliseconds(_timeout).ToString())
+		//Debug.WriteLine("Timeout check frequency: " + TimeoutCheckFrequency)
+		//Debug.WriteLine("Search pattern:          " + _runregex._pattern)
+		//Debug.WriteLine("Input:                   " + r.runtext)
+		//Debug.WriteLine("About to throw RegexMatchTimeoutException.")
+	}
+
+	return fmt.Errorf("match timeout after %v on input `%v`", r.timeout, string(r.runtext))
+}
+
+func (r *runner) initTrackCount() {
+	r.runtrackcount = r.code.TrackCount
+}
+
+// getRunner returns a run to use for matching re.
+// It uses the re's runner cache if possible, to avoid
+// unnecessary allocation.
+func (re *Regexp) getRunner() *runner {
+	re.muRun.Lock()
+	if n := len(re.runner); n > 0 {
+		z := re.runner[n-1]
+		re.runner = re.runner[:n-1]
+		re.muRun.Unlock()
+		return z
+	}
+	re.muRun.Unlock()
+	z := &runner{
+		re:   re,
+		code: re.code,
+	}
+	return z
+}
+
+// putRunner returns a runner to the re's cache.
+// There is no attempt to limit the size of the cache, so it will
+// grow to the maximum number of simultaneous matches
+// run using re.  (The cache empties when re gets garbage collected.)
+func (re *Regexp) putRunner(r *runner) {
+	re.muRun.Lock()
+	re.runner = append(re.runner, r)
+	re.muRun.Unlock()
+}